
mathworld.wolfram.com/LeastSquaresFittingPolynomial.html
Preview meta tags from the mathworld.wolfram.com website.
Linked Hostnames
5- 29 links tomathworld.wolfram.com
- 4 links towww.wolfram.com
- 3 links towww.wolframalpha.com
- 1 link towolframalpha.com
- 1 link towww.amazon.com
Thumbnail

Search Engine Appearance
Least Squares Fitting--Polynomial -- from Wolfram MathWorld
Generalizing from a straight line (i.e., first degree polynomial) to a kth degree polynomial y=a_0+a_1x+...+a_kx^k, (1) the residual is given by R^2=sum_(i=1)^n[y_i-(a_0+a_1x_i+...+a_kx_i^k)]^2. (2) The partial derivatives (again dropping superscripts) are (partial(R^2))/(partiala_0) = -2sum_(i=1)^(n)[y-(a_0+a_1x+...+a_kx^k)]=0 (3) (partial(R^2))/(partiala_1) = -2sum_(i=1)^(n)[y-(a_0+a_1x+...+a_kx^k)]x=0 (4) (partial(R^2))/(partiala_k) =...
Bing
Least Squares Fitting--Polynomial -- from Wolfram MathWorld
Generalizing from a straight line (i.e., first degree polynomial) to a kth degree polynomial y=a_0+a_1x+...+a_kx^k, (1) the residual is given by R^2=sum_(i=1)^n[y_i-(a_0+a_1x_i+...+a_kx_i^k)]^2. (2) The partial derivatives (again dropping superscripts) are (partial(R^2))/(partiala_0) = -2sum_(i=1)^(n)[y-(a_0+a_1x+...+a_kx^k)]=0 (3) (partial(R^2))/(partiala_1) = -2sum_(i=1)^(n)[y-(a_0+a_1x+...+a_kx^k)]x=0 (4) (partial(R^2))/(partiala_k) =...
DuckDuckGo
Least Squares Fitting--Polynomial -- from Wolfram MathWorld
Generalizing from a straight line (i.e., first degree polynomial) to a kth degree polynomial y=a_0+a_1x+...+a_kx^k, (1) the residual is given by R^2=sum_(i=1)^n[y_i-(a_0+a_1x_i+...+a_kx_i^k)]^2. (2) The partial derivatives (again dropping superscripts) are (partial(R^2))/(partiala_0) = -2sum_(i=1)^(n)[y-(a_0+a_1x+...+a_kx^k)]=0 (3) (partial(R^2))/(partiala_1) = -2sum_(i=1)^(n)[y-(a_0+a_1x+...+a_kx^k)]x=0 (4) (partial(R^2))/(partiala_k) =...
General Meta Tags
21- titleLeast Squares Fitting--Polynomial -- from Wolfram MathWorld
- DC.TitleLeast Squares Fitting--Polynomial
- DC.CreatorWeisstein, Eric W.
- DC.DescriptionGeneralizing from a straight line (i.e., first degree polynomial) to a kth degree polynomial y=a_0+a_1x+...+a_kx^k, (1) the residual is given by R^2=sum_(i=1)^n[y_i-(a_0+a_1x_i+...+a_kx_i^k)]^2. (2) The partial derivatives (again dropping superscripts) are (partial(R^2))/(partiala_0) = -2sum_(i=1)^(n)[y-(a_0+a_1x+...+a_kx^k)]=0 (3) (partial(R^2))/(partiala_1) = -2sum_(i=1)^(n)[y-(a_0+a_1x+...+a_kx^k)]x=0 (4) (partial(R^2))/(partiala_k) =...
- descriptionGeneralizing from a straight line (i.e., first degree polynomial) to a kth degree polynomial y=a_0+a_1x+...+a_kx^k, (1) the residual is given by R^2=sum_(i=1)^n[y_i-(a_0+a_1x_i+...+a_kx_i^k)]^2. (2) The partial derivatives (again dropping superscripts) are (partial(R^2))/(partiala_0) = -2sum_(i=1)^(n)[y-(a_0+a_1x+...+a_kx^k)]=0 (3) (partial(R^2))/(partiala_1) = -2sum_(i=1)^(n)[y-(a_0+a_1x+...+a_kx^k)]x=0 (4) (partial(R^2))/(partiala_k) =...
Open Graph Meta Tags
5- og:imagehttps://mathworld.wolfram.com/images/socialmedia/share/ogimage_LeastSquaresFittingPolynomial.png
- og:urlhttps://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html
- og:typewebsite
- og:titleLeast Squares Fitting--Polynomial -- from Wolfram MathWorld
- og:descriptionGeneralizing from a straight line (i.e., first degree polynomial) to a kth degree polynomial y=a_0+a_1x+...+a_kx^k, (1) the residual is given by R^2=sum_(i=1)^n[y_i-(a_0+a_1x_i+...+a_kx_i^k)]^2. (2) The partial derivatives (again dropping superscripts) are (partial(R^2))/(partiala_0) = -2sum_(i=1)^(n)[y-(a_0+a_1x+...+a_kx^k)]=0 (3) (partial(R^2))/(partiala_1) = -2sum_(i=1)^(n)[y-(a_0+a_1x+...+a_kx^k)]x=0 (4) (partial(R^2))/(partiala_k) =...
Twitter Meta Tags
5- twitter:cardsummary_large_image
- twitter:site@WolframResearch
- twitter:titleLeast Squares Fitting--Polynomial -- from Wolfram MathWorld
- twitter:descriptionGeneralizing from a straight line (i.e., first degree polynomial) to a kth degree polynomial y=a_0+a_1x+...+a_kx^k, (1) the residual is given by R^2=sum_(i=1)^n[y_i-(a_0+a_1x_i+...+a_kx_i^k)]^2. (2) The partial derivatives (again dropping superscripts) are (partial(R^2))/(partiala_0) = -2sum_(i=1)^(n)[y-(a_0+a_1x+...+a_kx^k)]=0 (3) (partial(R^2))/(partiala_1) = -2sum_(i=1)^(n)[y-(a_0+a_1x+...+a_kx^k)]x=0 (4) (partial(R^2))/(partiala_k) =...
- twitter:image:srchttps://mathworld.wolfram.com/images/socialmedia/share/ogimage_LeastSquaresFittingPolynomial.png
Link Tags
4- canonicalhttps://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html
- preload//www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
- stylesheet/css/styles.css
- stylesheet/common/js/c2c/1.0/WolframC2CGui.css.en
Links
38- http://www.wolframalpha.com/input/?i=Legendre+P%2810%2Cx%29
- https://mathworld.wolfram.com
- https://mathworld.wolfram.com/Coefficient.html
- https://mathworld.wolfram.com/LeastSquaresFitting.html
- https://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html