
mathworld.wolfram.com/Cross-Correlation.html
Preview meta tags from the mathworld.wolfram.com website.
Linked Hostnames
5- 28 links tomathworld.wolfram.com
- 4 links towww.wolfram.com
- 4 links towww.wolframalpha.com
- 3 links towww.amazon.com
- 1 link towolframalpha.com
Thumbnail

Search Engine Appearance
Cross-Correlation -- from Wolfram MathWorld
The cross-correlation of two complex functions f(t) and g(t) of a real variable t, denoted f*g is defined by f*g=f^_(-t)*g(t), (1) where * denotes convolution and f^_(t) is the complex conjugate of f(t). Since convolution is defined by f*g=int_(-infty)^inftyf(tau)g(t-tau)dtau, (2) it follows that [f*g](t)=int_(-infty)^inftyf^_(-tau)g(t-tau)dtau. (3) Letting tau^'=-tau, dtau^'=-dtau, so (3) is equivalent to f*g = int_infty^(-infty)f^_(tau^')g(t+tau^')(-dtau^') (4) =...
Bing
Cross-Correlation -- from Wolfram MathWorld
The cross-correlation of two complex functions f(t) and g(t) of a real variable t, denoted f*g is defined by f*g=f^_(-t)*g(t), (1) where * denotes convolution and f^_(t) is the complex conjugate of f(t). Since convolution is defined by f*g=int_(-infty)^inftyf(tau)g(t-tau)dtau, (2) it follows that [f*g](t)=int_(-infty)^inftyf^_(-tau)g(t-tau)dtau. (3) Letting tau^'=-tau, dtau^'=-dtau, so (3) is equivalent to f*g = int_infty^(-infty)f^_(tau^')g(t+tau^')(-dtau^') (4) =...
DuckDuckGo
Cross-Correlation -- from Wolfram MathWorld
The cross-correlation of two complex functions f(t) and g(t) of a real variable t, denoted f*g is defined by f*g=f^_(-t)*g(t), (1) where * denotes convolution and f^_(t) is the complex conjugate of f(t). Since convolution is defined by f*g=int_(-infty)^inftyf(tau)g(t-tau)dtau, (2) it follows that [f*g](t)=int_(-infty)^inftyf^_(-tau)g(t-tau)dtau. (3) Letting tau^'=-tau, dtau^'=-dtau, so (3) is equivalent to f*g = int_infty^(-infty)f^_(tau^')g(t+tau^')(-dtau^') (4) =...
General Meta Tags
18- titleCross-Correlation -- from Wolfram MathWorld
- DC.TitleCross-Correlation
- DC.CreatorWeisstein, Eric W.
- DC.DescriptionThe cross-correlation of two complex functions f(t) and g(t) of a real variable t, denoted f*g is defined by f*g=f^_(-t)*g(t), (1) where * denotes convolution and f^_(t) is the complex conjugate of f(t). Since convolution is defined by f*g=int_(-infty)^inftyf(tau)g(t-tau)dtau, (2) it follows that [f*g](t)=int_(-infty)^inftyf^_(-tau)g(t-tau)dtau. (3) Letting tau^'=-tau, dtau^'=-dtau, so (3) is equivalent to f*g = int_infty^(-infty)f^_(tau^')g(t+tau^')(-dtau^') (4) =...
- descriptionThe cross-correlation of two complex functions f(t) and g(t) of a real variable t, denoted f*g is defined by f*g=f^_(-t)*g(t), (1) where * denotes convolution and f^_(t) is the complex conjugate of f(t). Since convolution is defined by f*g=int_(-infty)^inftyf(tau)g(t-tau)dtau, (2) it follows that [f*g](t)=int_(-infty)^inftyf^_(-tau)g(t-tau)dtau. (3) Letting tau^'=-tau, dtau^'=-dtau, so (3) is equivalent to f*g = int_infty^(-infty)f^_(tau^')g(t+tau^')(-dtau^') (4) =...
Open Graph Meta Tags
5- og:imagehttps://mathworld.wolfram.com/images/socialmedia/share/ogimage_Cross-Correlation.png
- og:urlhttps://mathworld.wolfram.com/Cross-Correlation.html
- og:typewebsite
- og:titleCross-Correlation -- from Wolfram MathWorld
- og:descriptionThe cross-correlation of two complex functions f(t) and g(t) of a real variable t, denoted f*g is defined by f*g=f^_(-t)*g(t), (1) where * denotes convolution and f^_(t) is the complex conjugate of f(t). Since convolution is defined by f*g=int_(-infty)^inftyf(tau)g(t-tau)dtau, (2) it follows that [f*g](t)=int_(-infty)^inftyf^_(-tau)g(t-tau)dtau. (3) Letting tau^'=-tau, dtau^'=-dtau, so (3) is equivalent to f*g = int_infty^(-infty)f^_(tau^')g(t+tau^')(-dtau^') (4) =...
Twitter Meta Tags
5- twitter:cardsummary_large_image
- twitter:site@WolframResearch
- twitter:titleCross-Correlation -- from Wolfram MathWorld
- twitter:descriptionThe cross-correlation of two complex functions f(t) and g(t) of a real variable t, denoted f*g is defined by f*g=f^_(-t)*g(t), (1) where * denotes convolution and f^_(t) is the complex conjugate of f(t). Since convolution is defined by f*g=int_(-infty)^inftyf(tau)g(t-tau)dtau, (2) it follows that [f*g](t)=int_(-infty)^inftyf^_(-tau)g(t-tau)dtau. (3) Letting tau^'=-tau, dtau^'=-dtau, so (3) is equivalent to f*g = int_infty^(-infty)f^_(tau^')g(t+tau^')(-dtau^') (4) =...
- twitter:image:srchttps://mathworld.wolfram.com/images/socialmedia/share/ogimage_Cross-Correlation.png
Link Tags
4- canonicalhttps://mathworld.wolfram.com/Cross-Correlation.html
- preload//www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
- stylesheet/css/styles.css
- stylesheet/common/js/c2c/1.0/WolframC2CGui.css.en
Links
40- http://www.amazon.com/exec/obidos/ASIN/0070484473/ref=nosim/ericstreasuretro
- http://www.amazon.com/exec/obidos/ASIN/0073039381/ref=nosim/ericstreasuretro
- http://www.wolframalpha.com/input/?i=homotopy+3-sphere
- https://mathworld.wolfram.com
- https://mathworld.wolfram.com/Autocorrelation.html