mathworld.wolfram.com/Cross-Correlation.html

Preview meta tags from the mathworld.wolfram.com website.

Linked Hostnames

5

Thumbnail

Search Engine Appearance

Google

https://mathworld.wolfram.com/Cross-Correlation.html

Cross-Correlation -- from Wolfram MathWorld

The cross-correlation of two complex functions f(t) and g(t) of a real variable t, denoted f*g is defined by f*g=f^_(-t)*g(t), (1) where * denotes convolution and f^_(t) is the complex conjugate of f(t). Since convolution is defined by f*g=int_(-infty)^inftyf(tau)g(t-tau)dtau, (2) it follows that [f*g](t)=int_(-infty)^inftyf^_(-tau)g(t-tau)dtau. (3) Letting tau^'=-tau, dtau^'=-dtau, so (3) is equivalent to f*g = int_infty^(-infty)f^_(tau^')g(t+tau^')(-dtau^') (4) =...



Bing

Cross-Correlation -- from Wolfram MathWorld

https://mathworld.wolfram.com/Cross-Correlation.html

The cross-correlation of two complex functions f(t) and g(t) of a real variable t, denoted f*g is defined by f*g=f^_(-t)*g(t), (1) where * denotes convolution and f^_(t) is the complex conjugate of f(t). Since convolution is defined by f*g=int_(-infty)^inftyf(tau)g(t-tau)dtau, (2) it follows that [f*g](t)=int_(-infty)^inftyf^_(-tau)g(t-tau)dtau. (3) Letting tau^'=-tau, dtau^'=-dtau, so (3) is equivalent to f*g = int_infty^(-infty)f^_(tau^')g(t+tau^')(-dtau^') (4) =...



DuckDuckGo

https://mathworld.wolfram.com/Cross-Correlation.html

Cross-Correlation -- from Wolfram MathWorld

The cross-correlation of two complex functions f(t) and g(t) of a real variable t, denoted f*g is defined by f*g=f^_(-t)*g(t), (1) where * denotes convolution and f^_(t) is the complex conjugate of f(t). Since convolution is defined by f*g=int_(-infty)^inftyf(tau)g(t-tau)dtau, (2) it follows that [f*g](t)=int_(-infty)^inftyf^_(-tau)g(t-tau)dtau. (3) Letting tau^'=-tau, dtau^'=-dtau, so (3) is equivalent to f*g = int_infty^(-infty)f^_(tau^')g(t+tau^')(-dtau^') (4) =...

  • General Meta Tags

    18
    • title
      Cross-Correlation -- from Wolfram MathWorld
    • DC.Title
      Cross-Correlation
    • DC.Creator
      Weisstein, Eric W.
    • DC.Description
      The cross-correlation of two complex functions f(t) and g(t) of a real variable t, denoted f*g is defined by f*g=f^_(-t)*g(t), (1) where * denotes convolution and f^_(t) is the complex conjugate of f(t). Since convolution is defined by f*g=int_(-infty)^inftyf(tau)g(t-tau)dtau, (2) it follows that [f*g](t)=int_(-infty)^inftyf^_(-tau)g(t-tau)dtau. (3) Letting tau^'=-tau, dtau^'=-dtau, so (3) is equivalent to f*g = int_infty^(-infty)f^_(tau^')g(t+tau^')(-dtau^') (4) =...
    • description
      The cross-correlation of two complex functions f(t) and g(t) of a real variable t, denoted f*g is defined by f*g=f^_(-t)*g(t), (1) where * denotes convolution and f^_(t) is the complex conjugate of f(t). Since convolution is defined by f*g=int_(-infty)^inftyf(tau)g(t-tau)dtau, (2) it follows that [f*g](t)=int_(-infty)^inftyf^_(-tau)g(t-tau)dtau. (3) Letting tau^'=-tau, dtau^'=-dtau, so (3) is equivalent to f*g = int_infty^(-infty)f^_(tau^')g(t+tau^')(-dtau^') (4) =...
  • Open Graph Meta Tags

    5
    • og:image
      https://mathworld.wolfram.com/images/socialmedia/share/ogimage_Cross-Correlation.png
    • og:url
      https://mathworld.wolfram.com/Cross-Correlation.html
    • og:type
      website
    • og:title
      Cross-Correlation -- from Wolfram MathWorld
    • og:description
      The cross-correlation of two complex functions f(t) and g(t) of a real variable t, denoted f*g is defined by f*g=f^_(-t)*g(t), (1) where * denotes convolution and f^_(t) is the complex conjugate of f(t). Since convolution is defined by f*g=int_(-infty)^inftyf(tau)g(t-tau)dtau, (2) it follows that [f*g](t)=int_(-infty)^inftyf^_(-tau)g(t-tau)dtau. (3) Letting tau^'=-tau, dtau^'=-dtau, so (3) is equivalent to f*g = int_infty^(-infty)f^_(tau^')g(t+tau^')(-dtau^') (4) =...
  • Twitter Meta Tags

    5
    • twitter:card
      summary_large_image
    • twitter:site
      @WolframResearch
    • twitter:title
      Cross-Correlation -- from Wolfram MathWorld
    • twitter:description
      The cross-correlation of two complex functions f(t) and g(t) of a real variable t, denoted f*g is defined by f*g=f^_(-t)*g(t), (1) where * denotes convolution and f^_(t) is the complex conjugate of f(t). Since convolution is defined by f*g=int_(-infty)^inftyf(tau)g(t-tau)dtau, (2) it follows that [f*g](t)=int_(-infty)^inftyf^_(-tau)g(t-tau)dtau. (3) Letting tau^'=-tau, dtau^'=-dtau, so (3) is equivalent to f*g = int_infty^(-infty)f^_(tau^')g(t+tau^')(-dtau^') (4) =...
    • twitter:image:src
      https://mathworld.wolfram.com/images/socialmedia/share/ogimage_Cross-Correlation.png
  • Link Tags

    4
    • canonical
      https://mathworld.wolfram.com/Cross-Correlation.html
    • preload
      //www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
    • stylesheet
      /css/styles.css
    • stylesheet
      /common/js/c2c/1.0/WolframC2CGui.css.en

Links

40