mathworld.wolfram.com/Autocorrelation.html

Preview meta tags from the mathworld.wolfram.com website.

Linked Hostnames

5

Thumbnail

Search Engine Appearance

Google

https://mathworld.wolfram.com/Autocorrelation.html

Autocorrelation -- from Wolfram MathWorld

Let {a_i}_(i=0)^(N-1) be a periodic sequence, then the autocorrelation of the sequence, sometimes called the periodic autocorrelation (Zwillinger 1995, p. 223), is the sequence rho_i=sum_(j=0)^(N-1)a_ja^__(j+i), (1) where a^_ denotes the complex conjugate and the final subscript is understood to be taken modulo N. Similarly, for a periodic array a_(ij) with 0<=i<=M-1 and 0<=j<=N-1, the autocorrelation is the (2M)×(2N)-dimensional matrix given by ...



Bing

Autocorrelation -- from Wolfram MathWorld

https://mathworld.wolfram.com/Autocorrelation.html

Let {a_i}_(i=0)^(N-1) be a periodic sequence, then the autocorrelation of the sequence, sometimes called the periodic autocorrelation (Zwillinger 1995, p. 223), is the sequence rho_i=sum_(j=0)^(N-1)a_ja^__(j+i), (1) where a^_ denotes the complex conjugate and the final subscript is understood to be taken modulo N. Similarly, for a periodic array a_(ij) with 0<=i<=M-1 and 0<=j<=N-1, the autocorrelation is the (2M)×(2N)-dimensional matrix given by ...



DuckDuckGo

https://mathworld.wolfram.com/Autocorrelation.html

Autocorrelation -- from Wolfram MathWorld

Let {a_i}_(i=0)^(N-1) be a periodic sequence, then the autocorrelation of the sequence, sometimes called the periodic autocorrelation (Zwillinger 1995, p. 223), is the sequence rho_i=sum_(j=0)^(N-1)a_ja^__(j+i), (1) where a^_ denotes the complex conjugate and the final subscript is understood to be taken modulo N. Similarly, for a periodic array a_(ij) with 0<=i<=M-1 and 0<=j<=N-1, the autocorrelation is the (2M)×(2N)-dimensional matrix given by ...

  • General Meta Tags

    20
    • title
      Autocorrelation -- from Wolfram MathWorld
    • DC.Title
      Autocorrelation
    • DC.Creator
      Weisstein, Eric W.
    • DC.Description
      Let {a_i}_(i=0)^(N-1) be a periodic sequence, then the autocorrelation of the sequence, sometimes called the periodic autocorrelation (Zwillinger 1995, p. 223), is the sequence rho_i=sum_(j=0)^(N-1)a_ja^__(j+i), (1) where a^_ denotes the complex conjugate and the final subscript is understood to be taken modulo N. Similarly, for a periodic array a_(ij) with 0<=i<=M-1 and 0<=j<=N-1, the autocorrelation is the (2M)×(2N)-dimensional matrix given by ...
    • description
      Let {a_i}_(i=0)^(N-1) be a periodic sequence, then the autocorrelation of the sequence, sometimes called the periodic autocorrelation (Zwillinger 1995, p. 223), is the sequence rho_i=sum_(j=0)^(N-1)a_ja^__(j+i), (1) where a^_ denotes the complex conjugate and the final subscript is understood to be taken modulo N. Similarly, for a periodic array a_(ij) with 0<=i<=M-1 and 0<=j<=N-1, the autocorrelation is the (2M)×(2N)-dimensional matrix given by ...
  • Open Graph Meta Tags

    5
    • og:image
      https://mathworld.wolfram.com/images/socialmedia/share/ogimage_Autocorrelation.png
    • og:url
      https://mathworld.wolfram.com/Autocorrelation.html
    • og:type
      website
    • og:title
      Autocorrelation -- from Wolfram MathWorld
    • og:description
      Let {a_i}_(i=0)^(N-1) be a periodic sequence, then the autocorrelation of the sequence, sometimes called the periodic autocorrelation (Zwillinger 1995, p. 223), is the sequence rho_i=sum_(j=0)^(N-1)a_ja^__(j+i), (1) where a^_ denotes the complex conjugate and the final subscript is understood to be taken modulo N. Similarly, for a periodic array a_(ij) with 0<=i<=M-1 and 0<=j<=N-1, the autocorrelation is the (2M)×(2N)-dimensional matrix given by ...
  • Twitter Meta Tags

    5
    • twitter:card
      summary_large_image
    • twitter:site
      @WolframResearch
    • twitter:title
      Autocorrelation -- from Wolfram MathWorld
    • twitter:description
      Let {a_i}_(i=0)^(N-1) be a periodic sequence, then the autocorrelation of the sequence, sometimes called the periodic autocorrelation (Zwillinger 1995, p. 223), is the sequence rho_i=sum_(j=0)^(N-1)a_ja^__(j+i), (1) where a^_ denotes the complex conjugate and the final subscript is understood to be taken modulo N. Similarly, for a periodic array a_(ij) with 0<=i<=M-1 and 0<=j<=N-1, the autocorrelation is the (2M)×(2N)-dimensional matrix given by ...
    • twitter:image:src
      https://mathworld.wolfram.com/images/socialmedia/share/ogimage_Autocorrelation.png
  • Link Tags

    4
    • canonical
      https://mathworld.wolfram.com/Autocorrelation.html
    • preload
      //www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
    • stylesheet
      /css/styles.css
    • stylesheet
      /common/js/c2c/1.0/WolframC2CGui.css.en

Links

51