
mathworld.wolfram.com/Autocorrelation.html
Preview meta tags from the mathworld.wolfram.com website.
Linked Hostnames
5- 37 links tomathworld.wolfram.com
- 5 links towww.amazon.com
- 4 links towww.wolfram.com
- 4 links towww.wolframalpha.com
- 1 link towolframalpha.com
Thumbnail

Search Engine Appearance
Autocorrelation -- from Wolfram MathWorld
Let {a_i}_(i=0)^(N-1) be a periodic sequence, then the autocorrelation of the sequence, sometimes called the periodic autocorrelation (Zwillinger 1995, p. 223), is the sequence rho_i=sum_(j=0)^(N-1)a_ja^__(j+i), (1) where a^_ denotes the complex conjugate and the final subscript is understood to be taken modulo N. Similarly, for a periodic array a_(ij) with 0<=i<=M-1 and 0<=j<=N-1, the autocorrelation is the (2M)×(2N)-dimensional matrix given by ...
Bing
Autocorrelation -- from Wolfram MathWorld
Let {a_i}_(i=0)^(N-1) be a periodic sequence, then the autocorrelation of the sequence, sometimes called the periodic autocorrelation (Zwillinger 1995, p. 223), is the sequence rho_i=sum_(j=0)^(N-1)a_ja^__(j+i), (1) where a^_ denotes the complex conjugate and the final subscript is understood to be taken modulo N. Similarly, for a periodic array a_(ij) with 0<=i<=M-1 and 0<=j<=N-1, the autocorrelation is the (2M)×(2N)-dimensional matrix given by ...
DuckDuckGo
Autocorrelation -- from Wolfram MathWorld
Let {a_i}_(i=0)^(N-1) be a periodic sequence, then the autocorrelation of the sequence, sometimes called the periodic autocorrelation (Zwillinger 1995, p. 223), is the sequence rho_i=sum_(j=0)^(N-1)a_ja^__(j+i), (1) where a^_ denotes the complex conjugate and the final subscript is understood to be taken modulo N. Similarly, for a periodic array a_(ij) with 0<=i<=M-1 and 0<=j<=N-1, the autocorrelation is the (2M)×(2N)-dimensional matrix given by ...
General Meta Tags
20- titleAutocorrelation -- from Wolfram MathWorld
- DC.TitleAutocorrelation
- DC.CreatorWeisstein, Eric W.
- DC.DescriptionLet {a_i}_(i=0)^(N-1) be a periodic sequence, then the autocorrelation of the sequence, sometimes called the periodic autocorrelation (Zwillinger 1995, p. 223), is the sequence rho_i=sum_(j=0)^(N-1)a_ja^__(j+i), (1) where a^_ denotes the complex conjugate and the final subscript is understood to be taken modulo N. Similarly, for a periodic array a_(ij) with 0<=i<=M-1 and 0<=j<=N-1, the autocorrelation is the (2M)×(2N)-dimensional matrix given by ...
- descriptionLet {a_i}_(i=0)^(N-1) be a periodic sequence, then the autocorrelation of the sequence, sometimes called the periodic autocorrelation (Zwillinger 1995, p. 223), is the sequence rho_i=sum_(j=0)^(N-1)a_ja^__(j+i), (1) where a^_ denotes the complex conjugate and the final subscript is understood to be taken modulo N. Similarly, for a periodic array a_(ij) with 0<=i<=M-1 and 0<=j<=N-1, the autocorrelation is the (2M)×(2N)-dimensional matrix given by ...
Open Graph Meta Tags
5- og:imagehttps://mathworld.wolfram.com/images/socialmedia/share/ogimage_Autocorrelation.png
- og:urlhttps://mathworld.wolfram.com/Autocorrelation.html
- og:typewebsite
- og:titleAutocorrelation -- from Wolfram MathWorld
- og:descriptionLet {a_i}_(i=0)^(N-1) be a periodic sequence, then the autocorrelation of the sequence, sometimes called the periodic autocorrelation (Zwillinger 1995, p. 223), is the sequence rho_i=sum_(j=0)^(N-1)a_ja^__(j+i), (1) where a^_ denotes the complex conjugate and the final subscript is understood to be taken modulo N. Similarly, for a periodic array a_(ij) with 0<=i<=M-1 and 0<=j<=N-1, the autocorrelation is the (2M)×(2N)-dimensional matrix given by ...
Twitter Meta Tags
5- twitter:cardsummary_large_image
- twitter:site@WolframResearch
- twitter:titleAutocorrelation -- from Wolfram MathWorld
- twitter:descriptionLet {a_i}_(i=0)^(N-1) be a periodic sequence, then the autocorrelation of the sequence, sometimes called the periodic autocorrelation (Zwillinger 1995, p. 223), is the sequence rho_i=sum_(j=0)^(N-1)a_ja^__(j+i), (1) where a^_ denotes the complex conjugate and the final subscript is understood to be taken modulo N. Similarly, for a periodic array a_(ij) with 0<=i<=M-1 and 0<=j<=N-1, the autocorrelation is the (2M)×(2N)-dimensional matrix given by ...
- twitter:image:srchttps://mathworld.wolfram.com/images/socialmedia/share/ogimage_Autocorrelation.png
Link Tags
4- canonicalhttps://mathworld.wolfram.com/Autocorrelation.html
- preload//www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
- stylesheet/css/styles.css
- stylesheet/common/js/c2c/1.0/WolframC2CGui.css.en
Links
51- http://www.amazon.com/exec/obidos/ASIN/0070484473/ref=nosim/ericstreasuretro
- http://www.amazon.com/exec/obidos/ASIN/0073039381/ref=nosim/ericstreasuretro
- http://www.amazon.com/exec/obidos/ASIN/052143064X/ref=nosim/ericstreasuretro
- http://www.amazon.com/exec/obidos/ASIN/1584882913/ref=nosim/ericstreasuretro
- http://www.wolframalpha.com/input/?i=autocorrelation+[1+1+1+1+]