
mathworld.wolfram.com/BonneProjection.html
Preview meta tags from the mathworld.wolfram.com website.
Linked Hostnames
6- 29 links tomathworld.wolfram.com
- 4 links towww.wolfram.com
- 4 links towww.wolframalpha.com
- 2 links towww.amazon.com
- 1 link towolframalpha.com
- 1 link towww.mathworks.com
Thumbnail

Search Engine Appearance
Bonne Projection -- from Wolfram MathWorld
The Bonne projection is a map projection that resembles the shape of a heart. Let phi_1 be the standard parallel, lambda_0 the central meridian, phi be the latitude, and lambda the longitude on a unit sphere. Then x = rhosinE (1) y = cotphi_1-rhocosE, (2) where rho = cotphi_1+phi_1-phi (3) E = ((lambda-lambda_0)cosphi)/rho. (4) The illustrations above show Bonne projections for two different standard parallels. The inverse formulas are phi = cotphi_1+phi_1-rho (5) lambda =...
Bing
Bonne Projection -- from Wolfram MathWorld
The Bonne projection is a map projection that resembles the shape of a heart. Let phi_1 be the standard parallel, lambda_0 the central meridian, phi be the latitude, and lambda the longitude on a unit sphere. Then x = rhosinE (1) y = cotphi_1-rhocosE, (2) where rho = cotphi_1+phi_1-phi (3) E = ((lambda-lambda_0)cosphi)/rho. (4) The illustrations above show Bonne projections for two different standard parallels. The inverse formulas are phi = cotphi_1+phi_1-rho (5) lambda =...
DuckDuckGo
Bonne Projection -- from Wolfram MathWorld
The Bonne projection is a map projection that resembles the shape of a heart. Let phi_1 be the standard parallel, lambda_0 the central meridian, phi be the latitude, and lambda the longitude on a unit sphere. Then x = rhosinE (1) y = cotphi_1-rhocosE, (2) where rho = cotphi_1+phi_1-phi (3) E = ((lambda-lambda_0)cosphi)/rho. (4) The illustrations above show Bonne projections for two different standard parallels. The inverse formulas are phi = cotphi_1+phi_1-rho (5) lambda =...
General Meta Tags
18- titleBonne Projection -- from Wolfram MathWorld
- DC.TitleBonne Projection
- DC.CreatorWeisstein, Eric W.
- DC.DescriptionThe Bonne projection is a map projection that resembles the shape of a heart. Let phi_1 be the standard parallel, lambda_0 the central meridian, phi be the latitude, and lambda the longitude on a unit sphere. Then x = rhosinE (1) y = cotphi_1-rhocosE, (2) where rho = cotphi_1+phi_1-phi (3) E = ((lambda-lambda_0)cosphi)/rho. (4) The illustrations above show Bonne projections for two different standard parallels. The inverse formulas are phi = cotphi_1+phi_1-rho (5) lambda =...
- descriptionThe Bonne projection is a map projection that resembles the shape of a heart. Let phi_1 be the standard parallel, lambda_0 the central meridian, phi be the latitude, and lambda the longitude on a unit sphere. Then x = rhosinE (1) y = cotphi_1-rhocosE, (2) where rho = cotphi_1+phi_1-phi (3) E = ((lambda-lambda_0)cosphi)/rho. (4) The illustrations above show Bonne projections for two different standard parallels. The inverse formulas are phi = cotphi_1+phi_1-rho (5) lambda =...
Open Graph Meta Tags
5- og:imagehttps://mathworld.wolfram.com/images/socialmedia/share/ogimage_BonneProjection.png
- og:urlhttps://mathworld.wolfram.com/BonneProjection.html
- og:typewebsite
- og:titleBonne Projection -- from Wolfram MathWorld
- og:descriptionThe Bonne projection is a map projection that resembles the shape of a heart. Let phi_1 be the standard parallel, lambda_0 the central meridian, phi be the latitude, and lambda the longitude on a unit sphere. Then x = rhosinE (1) y = cotphi_1-rhocosE, (2) where rho = cotphi_1+phi_1-phi (3) E = ((lambda-lambda_0)cosphi)/rho. (4) The illustrations above show Bonne projections for two different standard parallels. The inverse formulas are phi = cotphi_1+phi_1-rho (5) lambda =...
Twitter Meta Tags
5- twitter:cardsummary_large_image
- twitter:site@WolframResearch
- twitter:titleBonne Projection -- from Wolfram MathWorld
- twitter:descriptionThe Bonne projection is a map projection that resembles the shape of a heart. Let phi_1 be the standard parallel, lambda_0 the central meridian, phi be the latitude, and lambda the longitude on a unit sphere. Then x = rhosinE (1) y = cotphi_1-rhocosE, (2) where rho = cotphi_1+phi_1-phi (3) E = ((lambda-lambda_0)cosphi)/rho. (4) The illustrations above show Bonne projections for two different standard parallels. The inverse formulas are phi = cotphi_1+phi_1-rho (5) lambda =...
- twitter:image:srchttps://mathworld.wolfram.com/images/socialmedia/share/ogimage_BonneProjection.png
Link Tags
4- canonicalhttps://mathworld.wolfram.com/BonneProjection.html
- preload//www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
- stylesheet/css/styles.css
- stylesheet/common/js/c2c/1.0/WolframC2CGui.css.en
Links
41- http://www.amazon.com/exec/obidos/ASIN/9998605067/ref=nosim/ericstreasuretro
- http://www.mathworks.com/access/helpdesk/help/toolbox/map/bonneprojection.shtml
- http://www.wolframalpha.com/entities/geographic_map_projection/bonne_projection/95/hu/k6
- https://mathworld.wolfram.com
- https://mathworld.wolfram.com/BonneProjection.html