math.answers.com/math-and-arithmetic/How_do_you_prove_the_derivative_of_parametric_equations

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/math-and-arithmetic/How_do_you_prove_the_derivative_of_parametric_equations

How do you prove the derivative of parametric equations? - Answers

The question is to PROVE that dy/dx = (dy/dt)/(dx/dt). This follows from the chain rule (without getting into any heavy formalism). We know x and y are functions of t. Given an appropriate curve (we can integrate piece-wise if necessary), y can be written as a function of x where x is a function of t, i.e., y = y(x(t)). By the chain rule, we have dy/dt = dy/dx * dx/dt. For points where the derivative of x with respect to t does not vanish, we therefore have (dy/dt)/(dx/dt) = dy/dx.



Bing

How do you prove the derivative of parametric equations? - Answers

https://math.answers.com/math-and-arithmetic/How_do_you_prove_the_derivative_of_parametric_equations

The question is to PROVE that dy/dx = (dy/dt)/(dx/dt). This follows from the chain rule (without getting into any heavy formalism). We know x and y are functions of t. Given an appropriate curve (we can integrate piece-wise if necessary), y can be written as a function of x where x is a function of t, i.e., y = y(x(t)). By the chain rule, we have dy/dt = dy/dx * dx/dt. For points where the derivative of x with respect to t does not vanish, we therefore have (dy/dt)/(dx/dt) = dy/dx.



DuckDuckGo

https://math.answers.com/math-and-arithmetic/How_do_you_prove_the_derivative_of_parametric_equations

How do you prove the derivative of parametric equations? - Answers

The question is to PROVE that dy/dx = (dy/dt)/(dx/dt). This follows from the chain rule (without getting into any heavy formalism). We know x and y are functions of t. Given an appropriate curve (we can integrate piece-wise if necessary), y can be written as a function of x where x is a function of t, i.e., y = y(x(t)). By the chain rule, we have dy/dt = dy/dx * dx/dt. For points where the derivative of x with respect to t does not vanish, we therefore have (dy/dt)/(dx/dt) = dy/dx.

  • General Meta Tags

    22
    • title
      How do you prove the derivative of parametric equations? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      The question is to PROVE that dy/dx = (dy/dt)/(dx/dt). This follows from the chain rule (without getting into any heavy formalism). We know x and y are functions of t. Given an appropriate curve (we can integrate piece-wise if necessary), y can be written as a function of x where x is a function of t, i.e., y = y(x(t)). By the chain rule, we have dy/dt = dy/dx * dx/dt. For points where the derivative of x with respect to t does not vanish, we therefore have (dy/dt)/(dx/dt) = dy/dx.
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/math-and-arithmetic/How_do_you_prove_the_derivative_of_parametric_equations
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58