math.answers.com/math-and-arithmetic/How_do_you_find_the_missing_side_of_a_triangle
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 31 links tomath.answers.com
- 21 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
How do you find the missing side of a triangle? - Answers
The most common way is to use Pythagoras' principle; "A2 + B2 = C2", where C is the side you are trying to find out and the other two are the lengths you already have. In this situation, C is the Hypotenuse, or the longest side of the triangle. When finding the shortest side, you have to rearrange the equation.However, this is only useful for Right Angled triangles. It is possible to change this to "A2 = B2 + C2 - (2BC)cos'a'", where A is the side you are looking for, and 'a' is the angle OPPOSITE this side. B and C remain the two given sides.Assuming you have a right triangle (one angle is 90o), we can use either the Pythagorean Theorem or the trigonometric functions.Let's assume your base is "x", height "y" and diagonal (hypotenuse) "r".Finding Values (Pythagorean Theorem):The Pythagorean Theorem states that, for a right triangle, r^2 = x^2 + y^2. We can use a little bit of algebra to find x, y and r.r = sqrt(x^2 + y^2)r^2 = x^2 + y^2r = sqrt(x^2 + y^2); remove the ^2 from rx = sqrt(r^2 - y^2)r^2 = x^2 + y^2r^2 - y^2 = x^2; move y^2 to the left side of the equationsqrt(r^2 - y^2) = x; remove the ^2 from xy = sqrt(r^2 - x^2)r^2 = x^2 + y^2r^2 - x^2 = y^2; move x^2 to the left side of the equationsqrt(r^2 - x^2) = y; remove the ^2 from yFinding Values (Trigonometric Functions):Acquiring Ratios:cos(angle) = x/rsin(angle) = y/rtan(angle) = y/xAcquiring Angles:cos-1(x/r) = anglesin-1(y/r) = angletan-1(y/x) = angleThat looks confusing. What are cos, sin, tan, etc?They're functions. You give a function input and it outputs something else. We won't worry about what they actually "are" - answering that requires calculus.x = cos(angle) * rcos(angle) = x/rcos(angle) * r = x; move r to the left side of the equationy = sin(angle) * rsin(angle) = y/rsin(angle) * r = y; move r to the left side of the equationx = 1 / (tan(angle)/y)tan(angle) = y/xtan(angle) / y = 1/x; move y to the left side of the equation1 / (tan(angle) / y) = x; flip the equationy = tan(angle) * xtan(angle) = y/xtan(angle) * x = y; move x to the left side of the equationr = 1 / (cos(angle)/x)cos(angle) = x/rcos(angle) / x = 1/r; move x to the left side of the equation1 / (cos(angle)/x) = r; flip the equationr = 1 / (sin(angle)/y)sin(angle) = y/rsin(angle) / y = 1/r; move y to the left side of the equation1 / (sin(angle)/y) = r; flip the equationI hope this helps,- Pritchard
Bing
How do you find the missing side of a triangle? - Answers
The most common way is to use Pythagoras' principle; "A2 + B2 = C2", where C is the side you are trying to find out and the other two are the lengths you already have. In this situation, C is the Hypotenuse, or the longest side of the triangle. When finding the shortest side, you have to rearrange the equation.However, this is only useful for Right Angled triangles. It is possible to change this to "A2 = B2 + C2 - (2BC)cos'a'", where A is the side you are looking for, and 'a' is the angle OPPOSITE this side. B and C remain the two given sides.Assuming you have a right triangle (one angle is 90o), we can use either the Pythagorean Theorem or the trigonometric functions.Let's assume your base is "x", height "y" and diagonal (hypotenuse) "r".Finding Values (Pythagorean Theorem):The Pythagorean Theorem states that, for a right triangle, r^2 = x^2 + y^2. We can use a little bit of algebra to find x, y and r.r = sqrt(x^2 + y^2)r^2 = x^2 + y^2r = sqrt(x^2 + y^2); remove the ^2 from rx = sqrt(r^2 - y^2)r^2 = x^2 + y^2r^2 - y^2 = x^2; move y^2 to the left side of the equationsqrt(r^2 - y^2) = x; remove the ^2 from xy = sqrt(r^2 - x^2)r^2 = x^2 + y^2r^2 - x^2 = y^2; move x^2 to the left side of the equationsqrt(r^2 - x^2) = y; remove the ^2 from yFinding Values (Trigonometric Functions):Acquiring Ratios:cos(angle) = x/rsin(angle) = y/rtan(angle) = y/xAcquiring Angles:cos-1(x/r) = anglesin-1(y/r) = angletan-1(y/x) = angleThat looks confusing. What are cos, sin, tan, etc?They're functions. You give a function input and it outputs something else. We won't worry about what they actually "are" - answering that requires calculus.x = cos(angle) * rcos(angle) = x/rcos(angle) * r = x; move r to the left side of the equationy = sin(angle) * rsin(angle) = y/rsin(angle) * r = y; move r to the left side of the equationx = 1 / (tan(angle)/y)tan(angle) = y/xtan(angle) / y = 1/x; move y to the left side of the equation1 / (tan(angle) / y) = x; flip the equationy = tan(angle) * xtan(angle) = y/xtan(angle) * x = y; move x to the left side of the equationr = 1 / (cos(angle)/x)cos(angle) = x/rcos(angle) / x = 1/r; move x to the left side of the equation1 / (cos(angle)/x) = r; flip the equationr = 1 / (sin(angle)/y)sin(angle) = y/rsin(angle) / y = 1/r; move y to the left side of the equation1 / (sin(angle)/y) = r; flip the equationI hope this helps,- Pritchard
DuckDuckGo
How do you find the missing side of a triangle? - Answers
The most common way is to use Pythagoras' principle; "A2 + B2 = C2", where C is the side you are trying to find out and the other two are the lengths you already have. In this situation, C is the Hypotenuse, or the longest side of the triangle. When finding the shortest side, you have to rearrange the equation.However, this is only useful for Right Angled triangles. It is possible to change this to "A2 = B2 + C2 - (2BC)cos'a'", where A is the side you are looking for, and 'a' is the angle OPPOSITE this side. B and C remain the two given sides.Assuming you have a right triangle (one angle is 90o), we can use either the Pythagorean Theorem or the trigonometric functions.Let's assume your base is "x", height "y" and diagonal (hypotenuse) "r".Finding Values (Pythagorean Theorem):The Pythagorean Theorem states that, for a right triangle, r^2 = x^2 + y^2. We can use a little bit of algebra to find x, y and r.r = sqrt(x^2 + y^2)r^2 = x^2 + y^2r = sqrt(x^2 + y^2); remove the ^2 from rx = sqrt(r^2 - y^2)r^2 = x^2 + y^2r^2 - y^2 = x^2; move y^2 to the left side of the equationsqrt(r^2 - y^2) = x; remove the ^2 from xy = sqrt(r^2 - x^2)r^2 = x^2 + y^2r^2 - x^2 = y^2; move x^2 to the left side of the equationsqrt(r^2 - x^2) = y; remove the ^2 from yFinding Values (Trigonometric Functions):Acquiring Ratios:cos(angle) = x/rsin(angle) = y/rtan(angle) = y/xAcquiring Angles:cos-1(x/r) = anglesin-1(y/r) = angletan-1(y/x) = angleThat looks confusing. What are cos, sin, tan, etc?They're functions. You give a function input and it outputs something else. We won't worry about what they actually "are" - answering that requires calculus.x = cos(angle) * rcos(angle) = x/rcos(angle) * r = x; move r to the left side of the equationy = sin(angle) * rsin(angle) = y/rsin(angle) * r = y; move r to the left side of the equationx = 1 / (tan(angle)/y)tan(angle) = y/xtan(angle) / y = 1/x; move y to the left side of the equation1 / (tan(angle) / y) = x; flip the equationy = tan(angle) * xtan(angle) = y/xtan(angle) * x = y; move x to the left side of the equationr = 1 / (cos(angle)/x)cos(angle) = x/rcos(angle) / x = 1/r; move x to the left side of the equation1 / (cos(angle)/x) = r; flip the equationr = 1 / (sin(angle)/y)sin(angle) = y/rsin(angle) / y = 1/r; move y to the left side of the equation1 / (sin(angle)/y) = r; flip the equationI hope this helps,- Pritchard
General Meta Tags
22- titleHow do you find the missing side of a triangle? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionThe most common way is to use Pythagoras' principle; "A2 + B2 = C2", where C is the side you are trying to find out and the other two are the lengths you already have. In this situation, C is the Hypotenuse, or the longest side of the triangle. When finding the shortest side, you have to rearrange the equation.However, this is only useful for Right Angled triangles. It is possible to change this to "A2 = B2 + C2 - (2BC)cos'a'", where A is the side you are looking for, and 'a' is the angle OPPOSITE this side. B and C remain the two given sides.Assuming you have a right triangle (one angle is 90o), we can use either the Pythagorean Theorem or the trigonometric functions.Let's assume your base is "x", height "y" and diagonal (hypotenuse) "r".Finding Values (Pythagorean Theorem):The Pythagorean Theorem states that, for a right triangle, r^2 = x^2 + y^2. We can use a little bit of algebra to find x, y and r.r = sqrt(x^2 + y^2)r^2 = x^2 + y^2r = sqrt(x^2 + y^2); remove the ^2 from rx = sqrt(r^2 - y^2)r^2 = x^2 + y^2r^2 - y^2 = x^2; move y^2 to the left side of the equationsqrt(r^2 - y^2) = x; remove the ^2 from xy = sqrt(r^2 - x^2)r^2 = x^2 + y^2r^2 - x^2 = y^2; move x^2 to the left side of the equationsqrt(r^2 - x^2) = y; remove the ^2 from yFinding Values (Trigonometric Functions):Acquiring Ratios:cos(angle) = x/rsin(angle) = y/rtan(angle) = y/xAcquiring Angles:cos-1(x/r) = anglesin-1(y/r) = angletan-1(y/x) = angleThat looks confusing. What are cos, sin, tan, etc?They're functions. You give a function input and it outputs something else. We won't worry about what they actually "are" - answering that requires calculus.x = cos(angle) * rcos(angle) = x/rcos(angle) * r = x; move r to the left side of the equationy = sin(angle) * rsin(angle) = y/rsin(angle) * r = y; move r to the left side of the equationx = 1 / (tan(angle)/y)tan(angle) = y/xtan(angle) / y = 1/x; move y to the left side of the equation1 / (tan(angle) / y) = x; flip the equationy = tan(angle) * xtan(angle) = y/xtan(angle) * x = y; move x to the left side of the equationr = 1 / (cos(angle)/x)cos(angle) = x/rcos(angle) / x = 1/r; move x to the left side of the equation1 / (cos(angle)/x) = r; flip the equationr = 1 / (sin(angle)/y)sin(angle) = y/rsin(angle) / y = 1/r; move y to the left side of the equation1 / (sin(angle)/y) = r; flip the equationI hope this helps,- Pritchard
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/How_do_you_find_the_missing_side_of_a_triangle
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/Do_coplanar_lines_always_intersect
- https://math.answers.com/math-and-arithmetic/How_do_you_find_the_missing_side_of_a_triangle
- https://math.answers.com/math-and-arithmetic/How_do_you_make_a_custom_evite_or_just_add_a_photo_or_two_to_an_pre_designed_evite
- https://math.answers.com/math-and-arithmetic/How_many_milligrams_are_there_in_50000_micrograms