math.answers.com/math-and-arithmetic/How_do_you_do_chain_rule
Preview meta tags from the math.answers.com website.
Linked Hostnames
9- 30 links tomath.answers.com
- 20 links towww.answers.com
- 2 links toqa.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
Thumbnail

Search Engine Appearance
How do you do chain rule? - Answers
The chain rule: given two functions of x, u & v, and let their respective derivatives with respect to x denote by u' and v', the derivative with respect to x of (u*v) is: v*u' + u*v' For division of two functions (u/v), derivative of (u/v) = [v*u' - u*v']/(v2) If you cannot remember if you've got it right, try this simple check: take f(x) = x3 but let u = x and v = x2, so u*v = x3. Derivative of x3 = 3*x2. Now try it with the chain rule: d(x*x2) = x2*1 + x*(2*x2)= 3*x2 I think the product rule is easier to remember, but sometimes cannot remember the quotient rule, so I'll try a simple one to make sure I got it right. Take u = x3 and let v = x, so u/v = x2, which the derivative = 2*x So for [v*u' - u*v']/(v2) we have: [x*3*x2 - x3*1]/(x2) = [2*x3]/(x2) = 2*x, so I did it correctly. I'll show one example of the product rule for more complex function, take sin(x)*ex --> u = sin(x), v=ex, so u' = cos(x) & v' = ex d(u*v) = ex * sin(x) + ex * cos(x) = (sin(x) + cos(x)) * ex
Bing
How do you do chain rule? - Answers
The chain rule: given two functions of x, u & v, and let their respective derivatives with respect to x denote by u' and v', the derivative with respect to x of (u*v) is: v*u' + u*v' For division of two functions (u/v), derivative of (u/v) = [v*u' - u*v']/(v2) If you cannot remember if you've got it right, try this simple check: take f(x) = x3 but let u = x and v = x2, so u*v = x3. Derivative of x3 = 3*x2. Now try it with the chain rule: d(x*x2) = x2*1 + x*(2*x2)= 3*x2 I think the product rule is easier to remember, but sometimes cannot remember the quotient rule, so I'll try a simple one to make sure I got it right. Take u = x3 and let v = x, so u/v = x2, which the derivative = 2*x So for [v*u' - u*v']/(v2) we have: [x*3*x2 - x3*1]/(x2) = [2*x3]/(x2) = 2*x, so I did it correctly. I'll show one example of the product rule for more complex function, take sin(x)*ex --> u = sin(x), v=ex, so u' = cos(x) & v' = ex d(u*v) = ex * sin(x) + ex * cos(x) = (sin(x) + cos(x)) * ex
DuckDuckGo
How do you do chain rule? - Answers
The chain rule: given two functions of x, u & v, and let their respective derivatives with respect to x denote by u' and v', the derivative with respect to x of (u*v) is: v*u' + u*v' For division of two functions (u/v), derivative of (u/v) = [v*u' - u*v']/(v2) If you cannot remember if you've got it right, try this simple check: take f(x) = x3 but let u = x and v = x2, so u*v = x3. Derivative of x3 = 3*x2. Now try it with the chain rule: d(x*x2) = x2*1 + x*(2*x2)= 3*x2 I think the product rule is easier to remember, but sometimes cannot remember the quotient rule, so I'll try a simple one to make sure I got it right. Take u = x3 and let v = x, so u/v = x2, which the derivative = 2*x So for [v*u' - u*v']/(v2) we have: [x*3*x2 - x3*1]/(x2) = [2*x3]/(x2) = 2*x, so I did it correctly. I'll show one example of the product rule for more complex function, take sin(x)*ex --> u = sin(x), v=ex, so u' = cos(x) & v' = ex d(u*v) = ex * sin(x) + ex * cos(x) = (sin(x) + cos(x)) * ex
General Meta Tags
22- titleHow do you do chain rule? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionThe chain rule: given two functions of x, u & v, and let their respective derivatives with respect to x denote by u' and v', the derivative with respect to x of (u*v) is: v*u' + u*v' For division of two functions (u/v), derivative of (u/v) = [v*u' - u*v']/(v2) If you cannot remember if you've got it right, try this simple check: take f(x) = x3 but let u = x and v = x2, so u*v = x3. Derivative of x3 = 3*x2. Now try it with the chain rule: d(x*x2) = x2*1 + x*(2*x2)= 3*x2 I think the product rule is easier to remember, but sometimes cannot remember the quotient rule, so I'll try a simple one to make sure I got it right. Take u = x3 and let v = x, so u/v = x2, which the derivative = 2*x So for [v*u' - u*v']/(v2) we have: [x*3*x2 - x3*1]/(x2) = [2*x3]/(x2) = 2*x, so I did it correctly. I'll show one example of the product rule for more complex function, take sin(x)*ex --> u = sin(x), v=ex, so u' = cos(x) & v' = ex d(u*v) = ex * sin(x) + ex * cos(x) = (sin(x) + cos(x)) * ex
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/How_do_you_do_chain_rule
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/Are_there_any_other_pairs_of_consecutive_primes
- https://math.answers.com/math-and-arithmetic/Can_anyone_explain_the_great_circle_formula_in_layman_terms
- https://math.answers.com/math-and-arithmetic/How_do_you_convert_mg_into_mcg
- https://math.answers.com/math-and-arithmetic/How_do_you_do_chain_rule