math.answers.com/geometry/Find_the_differential_equation_of_all_circles_tangent_to_y-axis
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 32 links tomath.answers.com
- 20 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
Find the differential equation of all circles tangent to y-axis? - Answers
Let the circle with centre (a, b) be tangent to the y-axis. Then, the radius of the circle must be b. Therefore the equation of the circle is (x - a)2 + (y - b)2 = b2 or x2 - 2ax + a2 + y2 - 2by = 0 Then 2x - 2a + 2ydy/dx - 2bdy/dx = 0 ie x - a + ydy/dx - bdy/dx (y - b)dy/dx = a - x so dy/dx = (a - x)/(y - b) or -(x - a)/(y - b)
Bing
Find the differential equation of all circles tangent to y-axis? - Answers
Let the circle with centre (a, b) be tangent to the y-axis. Then, the radius of the circle must be b. Therefore the equation of the circle is (x - a)2 + (y - b)2 = b2 or x2 - 2ax + a2 + y2 - 2by = 0 Then 2x - 2a + 2ydy/dx - 2bdy/dx = 0 ie x - a + ydy/dx - bdy/dx (y - b)dy/dx = a - x so dy/dx = (a - x)/(y - b) or -(x - a)/(y - b)
DuckDuckGo
Find the differential equation of all circles tangent to y-axis? - Answers
Let the circle with centre (a, b) be tangent to the y-axis. Then, the radius of the circle must be b. Therefore the equation of the circle is (x - a)2 + (y - b)2 = b2 or x2 - 2ax + a2 + y2 - 2by = 0 Then 2x - 2a + 2ydy/dx - 2bdy/dx = 0 ie x - a + ydy/dx - bdy/dx (y - b)dy/dx = a - x so dy/dx = (a - x)/(y - b) or -(x - a)/(y - b)
General Meta Tags
22- titleFind the differential equation of all circles tangent to y-axis? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionLet the circle with centre (a, b) be tangent to the y-axis. Then, the radius of the circle must be b. Therefore the equation of the circle is (x - a)2 + (y - b)2 = b2 or x2 - 2ax + a2 + y2 - 2by = 0 Then 2x - 2a + 2ydy/dx - 2bdy/dx = 0 ie x - a + ydy/dx - bdy/dx (y - b)dy/dx = a - x so dy/dx = (a - x)/(y - b) or -(x - a)/(y - b)
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/geometry/Find_the_differential_equation_of_all_circles_tangent_to_y-axis
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/geometry/Find_the_differential_equation_of_all_circles_tangent_to_y-axis
- https://math.answers.com/geometry/How_do_you_find_the_are_of_the_base_of_a_cylinder
- https://math.answers.com/geometry/How_doe_the_reflection_across_the_x_axis_change_the_coordinates_pf_a_point
- https://math.answers.com/geometry/How_many_square_inches_in_34_square_centimeters