math.answers.com/geometry/Find_the_differential_equation_of_all_circles_tangent_to_y-axis

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/geometry/Find_the_differential_equation_of_all_circles_tangent_to_y-axis

Find the differential equation of all circles tangent to y-axis? - Answers

Let the circle with centre (a, b) be tangent to the y-axis. Then, the radius of the circle must be b. Therefore the equation of the circle is (x - a)2 + (y - b)2 = b2 or x2 - 2ax + a2 + y2 - 2by = 0 Then 2x - 2a + 2ydy/dx - 2bdy/dx = 0 ie x - a + ydy/dx - bdy/dx (y - b)dy/dx = a - x so dy/dx = (a - x)/(y - b) or -(x - a)/(y - b)



Bing

Find the differential equation of all circles tangent to y-axis? - Answers

https://math.answers.com/geometry/Find_the_differential_equation_of_all_circles_tangent_to_y-axis

Let the circle with centre (a, b) be tangent to the y-axis. Then, the radius of the circle must be b. Therefore the equation of the circle is (x - a)2 + (y - b)2 = b2 or x2 - 2ax + a2 + y2 - 2by = 0 Then 2x - 2a + 2ydy/dx - 2bdy/dx = 0 ie x - a + ydy/dx - bdy/dx (y - b)dy/dx = a - x so dy/dx = (a - x)/(y - b) or -(x - a)/(y - b)



DuckDuckGo

https://math.answers.com/geometry/Find_the_differential_equation_of_all_circles_tangent_to_y-axis

Find the differential equation of all circles tangent to y-axis? - Answers

Let the circle with centre (a, b) be tangent to the y-axis. Then, the radius of the circle must be b. Therefore the equation of the circle is (x - a)2 + (y - b)2 = b2 or x2 - 2ax + a2 + y2 - 2by = 0 Then 2x - 2a + 2ydy/dx - 2bdy/dx = 0 ie x - a + ydy/dx - bdy/dx (y - b)dy/dx = a - x so dy/dx = (a - x)/(y - b) or -(x - a)/(y - b)

  • General Meta Tags

    22
    • title
      Find the differential equation of all circles tangent to y-axis? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      Let the circle with centre (a, b) be tangent to the y-axis. Then, the radius of the circle must be b. Therefore the equation of the circle is (x - a)2 + (y - b)2 = b2 or x2 - 2ax + a2 + y2 - 2by = 0 Then 2x - 2a + 2ydy/dx - 2bdy/dx = 0 ie x - a + ydy/dx - bdy/dx (y - b)dy/dx = a - x so dy/dx = (a - x)/(y - b) or -(x - a)/(y - b)
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/geometry/Find_the_differential_equation_of_all_circles_tangent_to_y-axis
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58