math.answers.com/geometry/Are_all_equilateral_triangles_are_similar
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 35 links tomath.answers.com
- 17 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
Are all equilateral triangles are similar? - Answers
DFN: we call a triangle equilateral if all sides of the triangle are the same length DFN:we call two triangles similar if corresponding angles are equal, and corresponding sides are proportional. First show that all corresponding sides are proportional: Consider a equilateral triangle with side lengths 1, all other equal lateral triangles sides can be expressed as S*(1), where S is some scalar. Hence all equilateral triangles sides are proportional to each other. Next, show that all corresponding angles are equal: The angle between two sides of a triangle is related to the length of the sides. These relationships are called sin, cos, and tan. Knowing that the cos(x), where x is one of the angles in the triangle, is the adjacent divided by the hypotenuse we see that cos(x)=(1/2)c/a, since a = c (because its equal lateral) we are left with cos(x)=(1/2) which means x = 60 degrees. this can be applied to all three angles, which shows that all three angles are 60 degrees. / \ / | \ a / | \ b /__ |__\ c We have now shown that all equal lateral triangles are similar because they all have proportional sides, and they all have equal angles.
Bing
Are all equilateral triangles are similar? - Answers
DFN: we call a triangle equilateral if all sides of the triangle are the same length DFN:we call two triangles similar if corresponding angles are equal, and corresponding sides are proportional. First show that all corresponding sides are proportional: Consider a equilateral triangle with side lengths 1, all other equal lateral triangles sides can be expressed as S*(1), where S is some scalar. Hence all equilateral triangles sides are proportional to each other. Next, show that all corresponding angles are equal: The angle between two sides of a triangle is related to the length of the sides. These relationships are called sin, cos, and tan. Knowing that the cos(x), where x is one of the angles in the triangle, is the adjacent divided by the hypotenuse we see that cos(x)=(1/2)c/a, since a = c (because its equal lateral) we are left with cos(x)=(1/2) which means x = 60 degrees. this can be applied to all three angles, which shows that all three angles are 60 degrees. / \ / | \ a / | \ b /__ |__\ c We have now shown that all equal lateral triangles are similar because they all have proportional sides, and they all have equal angles.
DuckDuckGo
Are all equilateral triangles are similar? - Answers
DFN: we call a triangle equilateral if all sides of the triangle are the same length DFN:we call two triangles similar if corresponding angles are equal, and corresponding sides are proportional. First show that all corresponding sides are proportional: Consider a equilateral triangle with side lengths 1, all other equal lateral triangles sides can be expressed as S*(1), where S is some scalar. Hence all equilateral triangles sides are proportional to each other. Next, show that all corresponding angles are equal: The angle between two sides of a triangle is related to the length of the sides. These relationships are called sin, cos, and tan. Knowing that the cos(x), where x is one of the angles in the triangle, is the adjacent divided by the hypotenuse we see that cos(x)=(1/2)c/a, since a = c (because its equal lateral) we are left with cos(x)=(1/2) which means x = 60 degrees. this can be applied to all three angles, which shows that all three angles are 60 degrees. / \ / | \ a / | \ b /__ |__\ c We have now shown that all equal lateral triangles are similar because they all have proportional sides, and they all have equal angles.
General Meta Tags
22- titleAre all equilateral triangles are similar? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionDFN: we call a triangle equilateral if all sides of the triangle are the same length DFN:we call two triangles similar if corresponding angles are equal, and corresponding sides are proportional. First show that all corresponding sides are proportional: Consider a equilateral triangle with side lengths 1, all other equal lateral triangles sides can be expressed as S*(1), where S is some scalar. Hence all equilateral triangles sides are proportional to each other. Next, show that all corresponding angles are equal: The angle between two sides of a triangle is related to the length of the sides. These relationships are called sin, cos, and tan. Knowing that the cos(x), where x is one of the angles in the triangle, is the adjacent divided by the hypotenuse we see that cos(x)=(1/2)c/a, since a = c (because its equal lateral) we are left with cos(x)=(1/2) which means x = 60 degrees. this can be applied to all three angles, which shows that all three angles are 60 degrees. / \ / | \ a / | \ b /__ |__\ c We have now shown that all equal lateral triangles are similar because they all have proportional sides, and they all have equal angles.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/geometry/Are_all_equilateral_triangles_are_similar
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/geometry/40_acres_is_how_many_square_feet
- https://math.answers.com/geometry/An_isosceles_trapezoid_has_base_angles_of_45_degrees_and_bases_of_lengths_9_and_15_The_area_of_the_trapezoid_is
- https://math.answers.com/geometry/Are_all_equilateral_triangles_are_similar
- https://math.answers.com/geometry/Are_all_isosceles_triangles_with_two_50_degree_angles_congruent