math.answers.com/basic-math/How_do_you_find_irrational_numbers_between_two_rational_numbers

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/basic-math/How_do_you_find_irrational_numbers_between_two_rational_numbers

How do you find irrational numbers between two rational numbers? - Answers

If a and b are rational, with a < b, then a + (b-a) [sqrt(2)/ 2] is an irrational number between a and b. This number is between a and b because sqrt(2)/2 is less than one and positive, so that a < a + (b-a) [sqrt(2)/3] < a + (b-a) [1] = b. To prove that a + (b-a) [sqrt(2)/2] is not rational, suppose that a + (b-a) [sqrt(2)/2] = p/q where p and q are integers. Then, sqrt(2) = ( p/q -a ) 2/(b-a) which is rational since the rationals are a field, closed under arithmetical operation, but sqrt(2) not rational (Look up the elementary proof if you do not know it.)



Bing

How do you find irrational numbers between two rational numbers? - Answers

https://math.answers.com/basic-math/How_do_you_find_irrational_numbers_between_two_rational_numbers

If a and b are rational, with a < b, then a + (b-a) [sqrt(2)/ 2] is an irrational number between a and b. This number is between a and b because sqrt(2)/2 is less than one and positive, so that a < a + (b-a) [sqrt(2)/3] < a + (b-a) [1] = b. To prove that a + (b-a) [sqrt(2)/2] is not rational, suppose that a + (b-a) [sqrt(2)/2] = p/q where p and q are integers. Then, sqrt(2) = ( p/q -a ) 2/(b-a) which is rational since the rationals are a field, closed under arithmetical operation, but sqrt(2) not rational (Look up the elementary proof if you do not know it.)



DuckDuckGo

https://math.answers.com/basic-math/How_do_you_find_irrational_numbers_between_two_rational_numbers

How do you find irrational numbers between two rational numbers? - Answers

If a and b are rational, with a < b, then a + (b-a) [sqrt(2)/ 2] is an irrational number between a and b. This number is between a and b because sqrt(2)/2 is less than one and positive, so that a < a + (b-a) [sqrt(2)/3] < a + (b-a) [1] = b. To prove that a + (b-a) [sqrt(2)/2] is not rational, suppose that a + (b-a) [sqrt(2)/2] = p/q where p and q are integers. Then, sqrt(2) = ( p/q -a ) 2/(b-a) which is rational since the rationals are a field, closed under arithmetical operation, but sqrt(2) not rational (Look up the elementary proof if you do not know it.)

  • General Meta Tags

    22
    • title
      How do you find irrational numbers between two rational numbers? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      If a and b are rational, with a < b, then a + (b-a) [sqrt(2)/ 2] is an irrational number between a and b. This number is between a and b because sqrt(2)/2 is less than one and positive, so that a < a + (b-a) [sqrt(2)/3] < a + (b-a) [1] = b. To prove that a + (b-a) [sqrt(2)/2] is not rational, suppose that a + (b-a) [sqrt(2)/2] = p/q where p and q are integers. Then, sqrt(2) = ( p/q -a ) 2/(b-a) which is rational since the rationals are a field, closed under arithmetical operation, but sqrt(2) not rational (Look up the elementary proof if you do not know it.)
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/basic-math/How_do_you_find_irrational_numbers_between_two_rational_numbers
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58