math.answers.com/basic-math/How_do_you_convert_1.666_repeating_into_a_fraction
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 32 links tomath.answers.com
- 20 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
How do you convert 1.666 repeating into a fraction? - Answers
To convert 1.666 repeating into a fraction, we can represent it as 1.6666... = 1.6 + 0.06 + 0.006 + ... = 1 + 6/10 + 6/100 + ... = 1 + 6/10(1 + 1/10 + 1/100 + ...) = 1 + 6/10(1/(1-1/10)) = 1 + 6/10(10/9) = 1 + 6/9 = 15/9 = 5/3. Therefore, 1.666 repeating is equal to 5/3 as a fraction.
Bing
How do you convert 1.666 repeating into a fraction? - Answers
To convert 1.666 repeating into a fraction, we can represent it as 1.6666... = 1.6 + 0.06 + 0.006 + ... = 1 + 6/10 + 6/100 + ... = 1 + 6/10(1 + 1/10 + 1/100 + ...) = 1 + 6/10(1/(1-1/10)) = 1 + 6/10(10/9) = 1 + 6/9 = 15/9 = 5/3. Therefore, 1.666 repeating is equal to 5/3 as a fraction.
DuckDuckGo
How do you convert 1.666 repeating into a fraction? - Answers
To convert 1.666 repeating into a fraction, we can represent it as 1.6666... = 1.6 + 0.06 + 0.006 + ... = 1 + 6/10 + 6/100 + ... = 1 + 6/10(1 + 1/10 + 1/100 + ...) = 1 + 6/10(1/(1-1/10)) = 1 + 6/10(10/9) = 1 + 6/9 = 15/9 = 5/3. Therefore, 1.666 repeating is equal to 5/3 as a fraction.
General Meta Tags
22- titleHow do you convert 1.666 repeating into a fraction? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionTo convert 1.666 repeating into a fraction, we can represent it as 1.6666... = 1.6 + 0.06 + 0.006 + ... = 1 + 6/10 + 6/100 + ... = 1 + 6/10(1 + 1/10 + 1/100 + ...) = 1 + 6/10(1/(1-1/10)) = 1 + 6/10(10/9) = 1 + 6/9 = 15/9 = 5/3. Therefore, 1.666 repeating is equal to 5/3 as a fraction.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/basic-math/How_do_you_convert_1.666_repeating_into_a_fraction
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/basic-math/Find_the_prime_factorization_of_400
- https://math.answers.com/basic-math/How_do_you_convert_1.666_repeating_into_a_fraction
- https://math.answers.com/basic-math/Is_0.8_greater_than_0.58
- https://math.answers.com/basic-math/Is_the_number_30_a_power_of_10