math.answers.com/algebra/Are_there_more_rational_number_than_irrational_numbers
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 34 links tomath.answers.com
- 18 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
Are there more rational number than irrational numbers? - Answers
There are more Irrational Numbers than rational numbers. The rationals are countably infinite; the irrationals are uncountably infinite. Uncountably infinite means that the set of irrational numbers has a cardinality known as the "cardinality of the continuum," which is strictly greater than the cardinality of the set of natural numbers which is countably infinite. The set of rational numbers has the same cardinality as the set of natural numbers, so there are more irrationals than rationals.
Bing
Are there more rational number than irrational numbers? - Answers
There are more Irrational Numbers than rational numbers. The rationals are countably infinite; the irrationals are uncountably infinite. Uncountably infinite means that the set of irrational numbers has a cardinality known as the "cardinality of the continuum," which is strictly greater than the cardinality of the set of natural numbers which is countably infinite. The set of rational numbers has the same cardinality as the set of natural numbers, so there are more irrationals than rationals.
DuckDuckGo
Are there more rational number than irrational numbers? - Answers
There are more Irrational Numbers than rational numbers. The rationals are countably infinite; the irrationals are uncountably infinite. Uncountably infinite means that the set of irrational numbers has a cardinality known as the "cardinality of the continuum," which is strictly greater than the cardinality of the set of natural numbers which is countably infinite. The set of rational numbers has the same cardinality as the set of natural numbers, so there are more irrationals than rationals.
General Meta Tags
22- titleAre there more rational number than irrational numbers? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionThere are more Irrational Numbers than rational numbers. The rationals are countably infinite; the irrationals are uncountably infinite. Uncountably infinite means that the set of irrational numbers has a cardinality known as the "cardinality of the continuum," which is strictly greater than the cardinality of the set of natural numbers which is countably infinite. The set of rational numbers has the same cardinality as the set of natural numbers, so there are more irrationals than rationals.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/algebra/Are_there_more_rational_number_than_irrational_numbers
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/algebra/101_K_on_a_S_K
- https://math.answers.com/algebra/Are_there_more_rational_number_than_irrational_numbers
- https://math.answers.com/algebra/How_many_handshakes_if_25_people_shake_hands_with_every_other_person_in_room
- https://math.answers.com/algebra/Is_the_product_of_a_nonzero_rational_number_and_an_irrational_number_irrational