mathworld.wolfram.com/AlgebraicFunction.html

Preview meta tags from the mathworld.wolfram.com website.

Linked Hostnames

6

Thumbnail

Search Engine Appearance

Google

https://mathworld.wolfram.com/AlgebraicFunction.html

Algebraic Function -- from Wolfram MathWorld

An algebraic function is a function f(x) which satisfies p(x,f(x))=0, where p(x,y) is a polynomial in x and y with integer coefficients. Functions that can be constructed using only a finite number of elementary operations together with the inverses of functions capable of being so constructed are examples of algebraic functions. Nonalgebraic functions are called transcendental functions.



Bing

Algebraic Function -- from Wolfram MathWorld

https://mathworld.wolfram.com/AlgebraicFunction.html

An algebraic function is a function f(x) which satisfies p(x,f(x))=0, where p(x,y) is a polynomial in x and y with integer coefficients. Functions that can be constructed using only a finite number of elementary operations together with the inverses of functions capable of being so constructed are examples of algebraic functions. Nonalgebraic functions are called transcendental functions.



DuckDuckGo

https://mathworld.wolfram.com/AlgebraicFunction.html

Algebraic Function -- from Wolfram MathWorld

An algebraic function is a function f(x) which satisfies p(x,f(x))=0, where p(x,y) is a polynomial in x and y with integer coefficients. Functions that can be constructed using only a finite number of elementary operations together with the inverses of functions capable of being so constructed are examples of algebraic functions. Nonalgebraic functions are called transcendental functions.

  • General Meta Tags

    23
    • title
      Algebraic Function -- from Wolfram MathWorld
    • DC.Title
      Algebraic Function
    • DC.Creator
      Weisstein, Eric W.
    • DC.Description
      An algebraic function is a function f(x) which satisfies p(x,f(x))=0, where p(x,y) is a polynomial in x and y with integer coefficients. Functions that can be constructed using only a finite number of elementary operations together with the inverses of functions capable of being so constructed are examples of algebraic functions. Nonalgebraic functions are called transcendental functions.
    • description
      An algebraic function is a function f(x) which satisfies p(x,f(x))=0, where p(x,y) is a polynomial in x and y with integer coefficients. Functions that can be constructed using only a finite number of elementary operations together with the inverses of functions capable of being so constructed are examples of algebraic functions. Nonalgebraic functions are called transcendental functions.
  • Open Graph Meta Tags

    5
    • og:image
      https://mathworld.wolfram.com/images/socialmedia/share.png
    • og:url
      https://mathworld.wolfram.com/AlgebraicFunction.html
    • og:type
      website
    • og:title
      Algebraic Function -- from Wolfram MathWorld
    • og:description
      An algebraic function is a function f(x) which satisfies p(x,f(x))=0, where p(x,y) is a polynomial in x and y with integer coefficients. Functions that can be constructed using only a finite number of elementary operations together with the inverses of functions capable of being so constructed are examples of algebraic functions. Nonalgebraic functions are called transcendental functions.
  • Twitter Meta Tags

    5
    • twitter:card
      summary_large_image
    • twitter:site
      @WolframResearch
    • twitter:title
      Algebraic Function -- from Wolfram MathWorld
    • twitter:description
      An algebraic function is a function f(x) which satisfies p(x,f(x))=0, where p(x,y) is a polynomial in x and y with integer coefficients. Functions that can be constructed using only a finite number of elementary operations together with the inverses of functions capable of being so constructed are examples of algebraic functions. Nonalgebraic functions are called transcendental functions.
    • twitter:image:src
      https://mathworld.wolfram.com/images/socialmedia/share.png
  • Link Tags

    4
    • canonical
      https://mathworld.wolfram.com/AlgebraicFunction.html
    • preload
      //www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
    • stylesheet
      /css/styles.css
    • stylesheet
      /common/js/c2c/1.0/WolframC2CGui.css.en

Links

41