math.answers.com/geometry/How_do_you_find_an_area_of_a_segment_of_a_circle
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 33 links tomath.answers.com
- 19 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
How do you find an area of a segment of a circle? - Answers
The solution depends on the information supplied. Basically, you find the area of the sector containing the segment and then deduct the area of the triangle formed by the chord and the two radii enclosing the sector. If you are given the radius(r) of the circle and the height(h) then construct a radius that is perpendicular to and bisects the chord. This will create two congruent triangles which together form the main triangle. Using Pythagoras enables the half-chord length to be calculated as the hypotenuse is r and the height (also the length of the third side) is r-h. With this information the full chord length can be established and thus the area of the main triangle. Using sine or cosine methods enables the sector angle at the centre to be calculated and thus the sector area. Simple subtraction produces the area of the segment. If you are given the radius and the chord(c) length then the construction referred to above enables the height of the main triangle to be calculated and a similar process will generate the area of that triangle and the sector area. This, in turn, will enable the segment area to be determined.
Bing
How do you find an area of a segment of a circle? - Answers
The solution depends on the information supplied. Basically, you find the area of the sector containing the segment and then deduct the area of the triangle formed by the chord and the two radii enclosing the sector. If you are given the radius(r) of the circle and the height(h) then construct a radius that is perpendicular to and bisects the chord. This will create two congruent triangles which together form the main triangle. Using Pythagoras enables the half-chord length to be calculated as the hypotenuse is r and the height (also the length of the third side) is r-h. With this information the full chord length can be established and thus the area of the main triangle. Using sine or cosine methods enables the sector angle at the centre to be calculated and thus the sector area. Simple subtraction produces the area of the segment. If you are given the radius and the chord(c) length then the construction referred to above enables the height of the main triangle to be calculated and a similar process will generate the area of that triangle and the sector area. This, in turn, will enable the segment area to be determined.
DuckDuckGo
How do you find an area of a segment of a circle? - Answers
The solution depends on the information supplied. Basically, you find the area of the sector containing the segment and then deduct the area of the triangle formed by the chord and the two radii enclosing the sector. If you are given the radius(r) of the circle and the height(h) then construct a radius that is perpendicular to and bisects the chord. This will create two congruent triangles which together form the main triangle. Using Pythagoras enables the half-chord length to be calculated as the hypotenuse is r and the height (also the length of the third side) is r-h. With this information the full chord length can be established and thus the area of the main triangle. Using sine or cosine methods enables the sector angle at the centre to be calculated and thus the sector area. Simple subtraction produces the area of the segment. If you are given the radius and the chord(c) length then the construction referred to above enables the height of the main triangle to be calculated and a similar process will generate the area of that triangle and the sector area. This, in turn, will enable the segment area to be determined.
General Meta Tags
22- titleHow do you find an area of a segment of a circle? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionThe solution depends on the information supplied. Basically, you find the area of the sector containing the segment and then deduct the area of the triangle formed by the chord and the two radii enclosing the sector. If you are given the radius(r) of the circle and the height(h) then construct a radius that is perpendicular to and bisects the chord. This will create two congruent triangles which together form the main triangle. Using Pythagoras enables the half-chord length to be calculated as the hypotenuse is r and the height (also the length of the third side) is r-h. With this information the full chord length can be established and thus the area of the main triangle. Using sine or cosine methods enables the sector angle at the centre to be calculated and thus the sector area. Simple subtraction produces the area of the segment. If you are given the radius and the chord(c) length then the construction referred to above enables the height of the main triangle to be calculated and a similar process will generate the area of that triangle and the sector area. This, in turn, will enable the segment area to be determined.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/geometry/How_do_you_find_an_area_of_a_segment_of_a_circle
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/geometry/10_%27_x_9%27_how_many_square_feet
- https://math.answers.com/geometry/16_feet_by_13_feet_is_how_many_yards
- https://math.answers.com/geometry/Diagonal_relationship_between_Be_and_Al
- https://math.answers.com/geometry/Does_the_dollar_sign_have_one_or_two_lines_through_it