math.answers.com/basic-math/How_do_you_use_complex_numbers

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/basic-math/How_do_you_use_complex_numbers

How do you use complex numbers? - Answers

Better get a textbook that explains this in more detail. You can also get a brief summary at Wikipedia, or other online sites. In any case, here is a brief summary. For addition and substraction, you add (or subtract) the real and imaginary parts separately. For example, (4 + 3i) + (7 - 2i) = 11 + 1. For multiplication, multiply each part of one number with each part of the other number - and remember that i2 = -1. For example, (4 + 3i) x (7 - 2i) = 28 - 8i + 21i - 6i2 = 28 + 13i - 6(-1) = 34 + 13i. Division is a bit more complicated. For example, to divide by (3 + 4i) you have to multiply numerator and denominator by the complex conjugate of this number, that is, change the sign of the imaginary part; in this case, (3 - 4i). Multiplication and division are actually quite a lot easier if you convert the complex number to polar coordinates, that is, a distance and an angle. Here is a quick example: (4 angle 30 degrees) x (5 angle 20 degrees) = (4 x 5) angle (30 + 20 degrees) = 20 angle 50 degrees (a length of 20, at an angle of 50 degrees). Most scientific calculators have special functions to convert from rectangular to polar coordinates and back.



Bing

How do you use complex numbers? - Answers

https://math.answers.com/basic-math/How_do_you_use_complex_numbers

Better get a textbook that explains this in more detail. You can also get a brief summary at Wikipedia, or other online sites. In any case, here is a brief summary. For addition and substraction, you add (or subtract) the real and imaginary parts separately. For example, (4 + 3i) + (7 - 2i) = 11 + 1. For multiplication, multiply each part of one number with each part of the other number - and remember that i2 = -1. For example, (4 + 3i) x (7 - 2i) = 28 - 8i + 21i - 6i2 = 28 + 13i - 6(-1) = 34 + 13i. Division is a bit more complicated. For example, to divide by (3 + 4i) you have to multiply numerator and denominator by the complex conjugate of this number, that is, change the sign of the imaginary part; in this case, (3 - 4i). Multiplication and division are actually quite a lot easier if you convert the complex number to polar coordinates, that is, a distance and an angle. Here is a quick example: (4 angle 30 degrees) x (5 angle 20 degrees) = (4 x 5) angle (30 + 20 degrees) = 20 angle 50 degrees (a length of 20, at an angle of 50 degrees). Most scientific calculators have special functions to convert from rectangular to polar coordinates and back.



DuckDuckGo

https://math.answers.com/basic-math/How_do_you_use_complex_numbers

How do you use complex numbers? - Answers

Better get a textbook that explains this in more detail. You can also get a brief summary at Wikipedia, or other online sites. In any case, here is a brief summary. For addition and substraction, you add (or subtract) the real and imaginary parts separately. For example, (4 + 3i) + (7 - 2i) = 11 + 1. For multiplication, multiply each part of one number with each part of the other number - and remember that i2 = -1. For example, (4 + 3i) x (7 - 2i) = 28 - 8i + 21i - 6i2 = 28 + 13i - 6(-1) = 34 + 13i. Division is a bit more complicated. For example, to divide by (3 + 4i) you have to multiply numerator and denominator by the complex conjugate of this number, that is, change the sign of the imaginary part; in this case, (3 - 4i). Multiplication and division are actually quite a lot easier if you convert the complex number to polar coordinates, that is, a distance and an angle. Here is a quick example: (4 angle 30 degrees) x (5 angle 20 degrees) = (4 x 5) angle (30 + 20 degrees) = 20 angle 50 degrees (a length of 20, at an angle of 50 degrees). Most scientific calculators have special functions to convert from rectangular to polar coordinates and back.

  • General Meta Tags

    22
    • title
      How do you use complex numbers? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      Better get a textbook that explains this in more detail. You can also get a brief summary at Wikipedia, or other online sites. In any case, here is a brief summary. For addition and substraction, you add (or subtract) the real and imaginary parts separately. For example, (4 + 3i) + (7 - 2i) = 11 + 1. For multiplication, multiply each part of one number with each part of the other number - and remember that i2 = -1. For example, (4 + 3i) x (7 - 2i) = 28 - 8i + 21i - 6i2 = 28 + 13i - 6(-1) = 34 + 13i. Division is a bit more complicated. For example, to divide by (3 + 4i) you have to multiply numerator and denominator by the complex conjugate of this number, that is, change the sign of the imaginary part; in this case, (3 - 4i). Multiplication and division are actually quite a lot easier if you convert the complex number to polar coordinates, that is, a distance and an angle. Here is a quick example: (4 angle 30 degrees) x (5 angle 20 degrees) = (4 x 5) angle (30 + 20 degrees) = 20 angle 50 degrees (a length of 20, at an angle of 50 degrees). Most scientific calculators have special functions to convert from rectangular to polar coordinates and back.
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/basic-math/How_do_you_use_complex_numbers
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58