ieeexplore.ieee.org/document/8267239

Preview meta tags from the ieeexplore.ieee.org website.

Linked Hostnames

2

Thumbnail

Search Engine Appearance

Google

https://ieeexplore.ieee.org/document/8267239

Towards a Machine-Learning Approach for Sickness Prediction in 360° Stereoscopic Videos

Virtual reality systems are widely believed to be the next major computing platform. There are, however, some barriers to adoption that must be addressed, such as that of motion sickness - which can lead to undesirable symptoms including postural instability, headaches, and nausea. Motion sickness in virtual reality occurs as a result of moving visual stimuli that cause users to perceive self-motion while they remain stationary in the real world. There are several contributing factors to both this perception of motion and the subsequent onset of sickness, including field of view, motion velocity, and stimulus depth. We verify first that differences in vection due to relative stimulus depth remain correlated with sickness. Then, we build a dataset of stereoscopic 3D videos and their corresponding sickness ratings in order to quantify their nauseogenicity, which we make available for future use. Using this dataset, we train a machine learning algorithm on hand-crafted features (quantifying speed, direction, and depth as functions of time) from each video, learning the contributions of these various features to the sickness ratings. Our predictor generally outperforms a naïve estimate, but is ultimately limited by the size of the dataset. However, our result is promising and opens the door to future work with more extensive datasets. This and further advances in this space have the potential to alleviate developer and end user concerns about motion sickness in the increasingly commonplace virtual world.



Bing

Towards a Machine-Learning Approach for Sickness Prediction in 360° Stereoscopic Videos

https://ieeexplore.ieee.org/document/8267239

Virtual reality systems are widely believed to be the next major computing platform. There are, however, some barriers to adoption that must be addressed, such as that of motion sickness - which can lead to undesirable symptoms including postural instability, headaches, and nausea. Motion sickness in virtual reality occurs as a result of moving visual stimuli that cause users to perceive self-motion while they remain stationary in the real world. There are several contributing factors to both this perception of motion and the subsequent onset of sickness, including field of view, motion velocity, and stimulus depth. We verify first that differences in vection due to relative stimulus depth remain correlated with sickness. Then, we build a dataset of stereoscopic 3D videos and their corresponding sickness ratings in order to quantify their nauseogenicity, which we make available for future use. Using this dataset, we train a machine learning algorithm on hand-crafted features (quantifying speed, direction, and depth as functions of time) from each video, learning the contributions of these various features to the sickness ratings. Our predictor generally outperforms a naïve estimate, but is ultimately limited by the size of the dataset. However, our result is promising and opens the door to future work with more extensive datasets. This and further advances in this space have the potential to alleviate developer and end user concerns about motion sickness in the increasingly commonplace virtual world.



DuckDuckGo

https://ieeexplore.ieee.org/document/8267239

Towards a Machine-Learning Approach for Sickness Prediction in 360° Stereoscopic Videos

Virtual reality systems are widely believed to be the next major computing platform. There are, however, some barriers to adoption that must be addressed, such as that of motion sickness - which can lead to undesirable symptoms including postural instability, headaches, and nausea. Motion sickness in virtual reality occurs as a result of moving visual stimuli that cause users to perceive self-motion while they remain stationary in the real world. There are several contributing factors to both this perception of motion and the subsequent onset of sickness, including field of view, motion velocity, and stimulus depth. We verify first that differences in vection due to relative stimulus depth remain correlated with sickness. Then, we build a dataset of stereoscopic 3D videos and their corresponding sickness ratings in order to quantify their nauseogenicity, which we make available for future use. Using this dataset, we train a machine learning algorithm on hand-crafted features (quantifying speed, direction, and depth as functions of time) from each video, learning the contributions of these various features to the sickness ratings. Our predictor generally outperforms a naïve estimate, but is ultimately limited by the size of the dataset. However, our result is promising and opens the door to future work with more extensive datasets. This and further advances in this space have the potential to alleviate developer and end user concerns about motion sickness in the increasingly commonplace virtual world.

  • General Meta Tags

    12
    • title
      Towards a Machine-Learning Approach for Sickness Prediction in 360° Stereoscopic Videos | IEEE Journals & Magazine | IEEE Xplore
    • google-site-verification
      qibYCgIKpiVF_VVjPYutgStwKn-0-KBB6Gw4Fc57FZg
    • Description
      Virtual reality systems are widely believed to be the next major computing platform. There are, however, some barriers to adoption that must be addressed, such
    • Content-Type
      text/html; charset=utf-8
    • viewport
      width=device-width, initial-scale=1.0
  • Open Graph Meta Tags

    3
    • og:image
      https://ieeexplore.ieee.org/assets/img/ieee_logo_smedia_200X200.png
    • og:title
      Towards a Machine-Learning Approach for Sickness Prediction in 360° Stereoscopic Videos
    • og:description
      Virtual reality systems are widely believed to be the next major computing platform. There are, however, some barriers to adoption that must be addressed, such as that of motion sickness - which can lead to undesirable symptoms including postural instability, headaches, and nausea. Motion sickness in virtual reality occurs as a result of moving visual stimuli that cause users to perceive self-motion while they remain stationary in the real world. There are several contributing factors to both this perception of motion and the subsequent onset of sickness, including field of view, motion velocity, and stimulus depth. We verify first that differences in vection due to relative stimulus depth remain correlated with sickness. Then, we build a dataset of stereoscopic 3D videos and their corresponding sickness ratings in order to quantify their nauseogenicity, which we make available for future use. Using this dataset, we train a machine learning algorithm on hand-crafted features (quantifying speed, direction, and depth as functions of time) from each video, learning the contributions of these various features to the sickness ratings. Our predictor generally outperforms a naïve estimate, but is ultimately limited by the size of the dataset. However, our result is promising and opens the door to future work with more extensive datasets. This and further advances in this space have the potential to alleviate developer and end user concerns about motion sickness in the increasingly commonplace virtual world.
  • Twitter Meta Tags

    1
    • twitter:card
      summary
  • Link Tags

    9
    • canonical
      https://ieeexplore.ieee.org/document/8267239
    • icon
      /assets/img/favicon.ico
    • stylesheet
      https://ieeexplore.ieee.org/assets/css/osano-cookie-consent-xplore.css
    • stylesheet
      /assets/css/simplePassMeter.min.css?cv=20250520_00000
    • stylesheet
      /assets/dist/ng-new/styles.css?cv=20250520_00000

Links

17