ieeexplore.ieee.org/document/10579092

Preview meta tags from the ieeexplore.ieee.org website.

Linked Hostnames

2

Thumbnail

Search Engine Appearance

Google

https://ieeexplore.ieee.org/document/10579092

Picasso: Memory-Efficient Graph Coloring Using Palettes With Applications in Quantum Computing

A coloring of a graph is an assignment of colors to vertices such that no two neighboring vertices have the same color. The need for memory-efficient coloring algorithms is motivated by their application in computing clique partitions of graphs arising in quantum computations where the objective is to map a large set of Pauli strings into a compact set of unitaries. We present Picasso, a randomized memory-efficient iterative parallel graph coloring algorithm with theoretical sublinear space guarantees under practical assumptions. The parameters of our algorithm provide a trade-off between coloring quality and resource consumption. To assist the user, we also propose a machine learning model to predict the coloring algorithm’s parameters considering these trade-offs. We provide a sequential and parallel implementation of the proposed algorithm.We perform an experimental evaluation on a 64-core AMD CPU equipped with 512 GB of memory and an Nvidia A100 GPU with 40GB of memory. For a small dataset where existing coloring algorithms can be executed within the 512 GB memory budget, we show up to 68× memory savings. On massive datasets, we demonstrate that GPU-accelerated Picasso can process inputs with 49.5× more Pauli strings (vertex set in our graph) and 2,478× more edges than state-of-the-art parallel approaches.



Bing

Picasso: Memory-Efficient Graph Coloring Using Palettes With Applications in Quantum Computing

https://ieeexplore.ieee.org/document/10579092

A coloring of a graph is an assignment of colors to vertices such that no two neighboring vertices have the same color. The need for memory-efficient coloring algorithms is motivated by their application in computing clique partitions of graphs arising in quantum computations where the objective is to map a large set of Pauli strings into a compact set of unitaries. We present Picasso, a randomized memory-efficient iterative parallel graph coloring algorithm with theoretical sublinear space guarantees under practical assumptions. The parameters of our algorithm provide a trade-off between coloring quality and resource consumption. To assist the user, we also propose a machine learning model to predict the coloring algorithm’s parameters considering these trade-offs. We provide a sequential and parallel implementation of the proposed algorithm.We perform an experimental evaluation on a 64-core AMD CPU equipped with 512 GB of memory and an Nvidia A100 GPU with 40GB of memory. For a small dataset where existing coloring algorithms can be executed within the 512 GB memory budget, we show up to 68× memory savings. On massive datasets, we demonstrate that GPU-accelerated Picasso can process inputs with 49.5× more Pauli strings (vertex set in our graph) and 2,478× more edges than state-of-the-art parallel approaches.



DuckDuckGo

https://ieeexplore.ieee.org/document/10579092

Picasso: Memory-Efficient Graph Coloring Using Palettes With Applications in Quantum Computing

A coloring of a graph is an assignment of colors to vertices such that no two neighboring vertices have the same color. The need for memory-efficient coloring algorithms is motivated by their application in computing clique partitions of graphs arising in quantum computations where the objective is to map a large set of Pauli strings into a compact set of unitaries. We present Picasso, a randomized memory-efficient iterative parallel graph coloring algorithm with theoretical sublinear space guarantees under practical assumptions. The parameters of our algorithm provide a trade-off between coloring quality and resource consumption. To assist the user, we also propose a machine learning model to predict the coloring algorithm’s parameters considering these trade-offs. We provide a sequential and parallel implementation of the proposed algorithm.We perform an experimental evaluation on a 64-core AMD CPU equipped with 512 GB of memory and an Nvidia A100 GPU with 40GB of memory. For a small dataset where existing coloring algorithms can be executed within the 512 GB memory budget, we show up to 68× memory savings. On massive datasets, we demonstrate that GPU-accelerated Picasso can process inputs with 49.5× more Pauli strings (vertex set in our graph) and 2,478× more edges than state-of-the-art parallel approaches.

  • General Meta Tags

    12
    • title
      Picasso: Memory-Efficient Graph Coloring Using Palettes With Applications in Quantum Computing | IEEE Conference Publication | IEEE Xplore
    • google-site-verification
      qibYCgIKpiVF_VVjPYutgStwKn-0-KBB6Gw4Fc57FZg
    • Description
      A coloring of a graph is an assignment of colors to vertices such that no two neighboring vertices have the same color. The need for memory-efficient coloring a
    • Content-Type
      text/html; charset=utf-8
    • viewport
      width=device-width, initial-scale=1.0
  • Open Graph Meta Tags

    3
    • og:image
      https://ieeexplore.ieee.org/assets/img/ieee_logo_smedia_200X200.png
    • og:title
      Picasso: Memory-Efficient Graph Coloring Using Palettes With Applications in Quantum Computing
    • og:description
      A coloring of a graph is an assignment of colors to vertices such that no two neighboring vertices have the same color. The need for memory-efficient coloring algorithms is motivated by their application in computing clique partitions of graphs arising in quantum computations where the objective is to map a large set of Pauli strings into a compact set of unitaries. We present Picasso, a randomized memory-efficient iterative parallel graph coloring algorithm with theoretical sublinear space guarantees under practical assumptions. The parameters of our algorithm provide a trade-off between coloring quality and resource consumption. To assist the user, we also propose a machine learning model to predict the coloring algorithm’s parameters considering these trade-offs. We provide a sequential and parallel implementation of the proposed algorithm.We perform an experimental evaluation on a 64-core AMD CPU equipped with 512 GB of memory and an Nvidia A100 GPU with 40GB of memory. For a small dataset where existing coloring algorithms can be executed within the 512 GB memory budget, we show up to 68× memory savings. On massive datasets, we demonstrate that GPU-accelerated Picasso can process inputs with 49.5× more Pauli strings (vertex set in our graph) and 2,478× more edges than state-of-the-art parallel approaches.
  • Twitter Meta Tags

    1
    • twitter:card
      summary
  • Link Tags

    9
    • canonical
      https://ieeexplore.ieee.org/document/10579092
    • icon
      /assets/img/favicon.ico
    • stylesheet
      https://ieeexplore.ieee.org/assets/css/osano-cookie-consent-xplore.css
    • stylesheet
      /assets/css/simplePassMeter.min.css?cv=20250308_00000
    • stylesheet
      /assets/dist/ng-new/styles.css?cv=20250308_00000

Links

17