ieeexplore.ieee.org/document/10579092
Preview meta tags from the ieeexplore.ieee.org website.
Linked Hostnames
2Thumbnail

Search Engine Appearance
Picasso: Memory-Efficient Graph Coloring Using Palettes With Applications in Quantum Computing
A coloring of a graph is an assignment of colors to vertices such that no two neighboring vertices have the same color. The need for memory-efficient coloring algorithms is motivated by their application in computing clique partitions of graphs arising in quantum computations where the objective is to map a large set of Pauli strings into a compact set of unitaries. We present Picasso, a randomized memory-efficient iterative parallel graph coloring algorithm with theoretical sublinear space guarantees under practical assumptions. The parameters of our algorithm provide a trade-off between coloring quality and resource consumption. To assist the user, we also propose a machine learning model to predict the coloring algorithm’s parameters considering these trade-offs. We provide a sequential and parallel implementation of the proposed algorithm.We perform an experimental evaluation on a 64-core AMD CPU equipped with 512 GB of memory and an Nvidia A100 GPU with 40GB of memory. For a small dataset where existing coloring algorithms can be executed within the 512 GB memory budget, we show up to 68× memory savings. On massive datasets, we demonstrate that GPU-accelerated Picasso can process inputs with 49.5× more Pauli strings (vertex set in our graph) and 2,478× more edges than state-of-the-art parallel approaches.
Bing
Picasso: Memory-Efficient Graph Coloring Using Palettes With Applications in Quantum Computing
A coloring of a graph is an assignment of colors to vertices such that no two neighboring vertices have the same color. The need for memory-efficient coloring algorithms is motivated by their application in computing clique partitions of graphs arising in quantum computations where the objective is to map a large set of Pauli strings into a compact set of unitaries. We present Picasso, a randomized memory-efficient iterative parallel graph coloring algorithm with theoretical sublinear space guarantees under practical assumptions. The parameters of our algorithm provide a trade-off between coloring quality and resource consumption. To assist the user, we also propose a machine learning model to predict the coloring algorithm’s parameters considering these trade-offs. We provide a sequential and parallel implementation of the proposed algorithm.We perform an experimental evaluation on a 64-core AMD CPU equipped with 512 GB of memory and an Nvidia A100 GPU with 40GB of memory. For a small dataset where existing coloring algorithms can be executed within the 512 GB memory budget, we show up to 68× memory savings. On massive datasets, we demonstrate that GPU-accelerated Picasso can process inputs with 49.5× more Pauli strings (vertex set in our graph) and 2,478× more edges than state-of-the-art parallel approaches.
DuckDuckGo
Picasso: Memory-Efficient Graph Coloring Using Palettes With Applications in Quantum Computing
A coloring of a graph is an assignment of colors to vertices such that no two neighboring vertices have the same color. The need for memory-efficient coloring algorithms is motivated by their application in computing clique partitions of graphs arising in quantum computations where the objective is to map a large set of Pauli strings into a compact set of unitaries. We present Picasso, a randomized memory-efficient iterative parallel graph coloring algorithm with theoretical sublinear space guarantees under practical assumptions. The parameters of our algorithm provide a trade-off between coloring quality and resource consumption. To assist the user, we also propose a machine learning model to predict the coloring algorithm’s parameters considering these trade-offs. We provide a sequential and parallel implementation of the proposed algorithm.We perform an experimental evaluation on a 64-core AMD CPU equipped with 512 GB of memory and an Nvidia A100 GPU with 40GB of memory. For a small dataset where existing coloring algorithms can be executed within the 512 GB memory budget, we show up to 68× memory savings. On massive datasets, we demonstrate that GPU-accelerated Picasso can process inputs with 49.5× more Pauli strings (vertex set in our graph) and 2,478× more edges than state-of-the-art parallel approaches.
General Meta Tags
12- titlePicasso: Memory-Efficient Graph Coloring Using Palettes With Applications in Quantum Computing | IEEE Conference Publication | IEEE Xplore
- google-site-verificationqibYCgIKpiVF_VVjPYutgStwKn-0-KBB6Gw4Fc57FZg
- DescriptionA coloring of a graph is an assignment of colors to vertices such that no two neighboring vertices have the same color. The need for memory-efficient coloring a
- Content-Typetext/html; charset=utf-8
- viewportwidth=device-width, initial-scale=1.0
Open Graph Meta Tags
3- og:imagehttps://ieeexplore.ieee.org/assets/img/ieee_logo_smedia_200X200.png
- og:titlePicasso: Memory-Efficient Graph Coloring Using Palettes With Applications in Quantum Computing
- og:descriptionA coloring of a graph is an assignment of colors to vertices such that no two neighboring vertices have the same color. The need for memory-efficient coloring algorithms is motivated by their application in computing clique partitions of graphs arising in quantum computations where the objective is to map a large set of Pauli strings into a compact set of unitaries. We present Picasso, a randomized memory-efficient iterative parallel graph coloring algorithm with theoretical sublinear space guarantees under practical assumptions. The parameters of our algorithm provide a trade-off between coloring quality and resource consumption. To assist the user, we also propose a machine learning model to predict the coloring algorithm’s parameters considering these trade-offs. We provide a sequential and parallel implementation of the proposed algorithm.We perform an experimental evaluation on a 64-core AMD CPU equipped with 512 GB of memory and an Nvidia A100 GPU with 40GB of memory. For a small dataset where existing coloring algorithms can be executed within the 512 GB memory budget, we show up to 68× memory savings. On massive datasets, we demonstrate that GPU-accelerated Picasso can process inputs with 49.5× more Pauli strings (vertex set in our graph) and 2,478× more edges than state-of-the-art parallel approaches.
Twitter Meta Tags
1- twitter:cardsummary
Link Tags
9- canonicalhttps://ieeexplore.ieee.org/document/10579092
- icon/assets/img/favicon.ico
- stylesheethttps://ieeexplore.ieee.org/assets/css/osano-cookie-consent-xplore.css
- stylesheet/assets/css/simplePassMeter.min.css?cv=20250308_00000
- stylesheet/assets/dist/ng-new/styles.css?cv=20250308_00000
Links
17- http://www.ieee.org/about/help/security_privacy.html
- http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html
- https://ieeexplore.ieee.org/Xplorehelp
- https://ieeexplore.ieee.org/Xplorehelp/overview-of-ieee-xplore/about-ieee-xplore
- https://ieeexplore.ieee.org/Xplorehelp/overview-of-ieee-xplore/accessibility-statement