
eprint.iacr.org/2020/077
Preview meta tags from the eprint.iacr.org website.
Linked Hostnames
5- 24 links toeprint.iacr.org
- 1 link tocreativecommons.org
- 1 link toia.cr
- 1 link toiacr.org
- 1 link towww.iacr.org
Thumbnail

Search Engine Appearance
Improved Quantum Circuits for Elliptic Curve Discrete Logarithms
We present improved quantum circuits for elliptic curve scalar multiplication, the most costly component in Shor's algorithm to compute discrete logarithms in elliptic curve groups. We optimize low-level components such as reversible integer and modular arithmetic through windowing techniques and more adaptive placement of uncomputing steps, and improve over previous quantum circuits for modular inversion by reformulating the binary Euclidean algorithm. Overall, we obtain an affine Weierstrass point addition circuit that has lower depth and uses fewer T gates than previous circuits. While previous work mostly focuses on minimizing the total number of qubits, we present various trade-offs between different cost metrics including the number of qubits, circuit depth and T-gate count. Finally, we provide a full implementation of point addition in the Q# quantum programming language that allows unit tests and automatic quantum resource estimation for all components.
Bing
Improved Quantum Circuits for Elliptic Curve Discrete Logarithms
We present improved quantum circuits for elliptic curve scalar multiplication, the most costly component in Shor's algorithm to compute discrete logarithms in elliptic curve groups. We optimize low-level components such as reversible integer and modular arithmetic through windowing techniques and more adaptive placement of uncomputing steps, and improve over previous quantum circuits for modular inversion by reformulating the binary Euclidean algorithm. Overall, we obtain an affine Weierstrass point addition circuit that has lower depth and uses fewer T gates than previous circuits. While previous work mostly focuses on minimizing the total number of qubits, we present various trade-offs between different cost metrics including the number of qubits, circuit depth and T-gate count. Finally, we provide a full implementation of point addition in the Q# quantum programming language that allows unit tests and automatic quantum resource estimation for all components.
DuckDuckGo

Improved Quantum Circuits for Elliptic Curve Discrete Logarithms
We present improved quantum circuits for elliptic curve scalar multiplication, the most costly component in Shor's algorithm to compute discrete logarithms in elliptic curve groups. We optimize low-level components such as reversible integer and modular arithmetic through windowing techniques and more adaptive placement of uncomputing steps, and improve over previous quantum circuits for modular inversion by reformulating the binary Euclidean algorithm. Overall, we obtain an affine Weierstrass point addition circuit that has lower depth and uses fewer T gates than previous circuits. While previous work mostly focuses on minimizing the total number of qubits, we present various trade-offs between different cost metrics including the number of qubits, circuit depth and T-gate count. Finally, we provide a full implementation of point addition in the Q# quantum programming language that allows unit tests and automatic quantum resource estimation for all components.
General Meta Tags
19- titleImproved Quantum Circuits for Elliptic Curve Discrete Logarithms
- charsetutf-8
- viewportwidth=device-width, initial-scale=1, shrink-to-fit=no
- citation_titleImproved Quantum Circuits for Elliptic Curve Discrete Logarithms
- citation_authorThomas Häner
Open Graph Meta Tags
7- og:imagehttps://eprint.iacr.org/img/iacrlogo.png
- og:image:altIACR logo
- og:urlhttps://eprint.iacr.org/2020/077
- og:site_nameIACR Cryptology ePrint Archive
- og:typearticle
Link Tags
4- apple-touch-icon/img/apple-touch-icon-180x180.png
- shortcut icon/favicon.ico
- stylesheet/css/dist/css/bootstrap.min.css
- stylesheet/css/eprint.css?v=10
Links
28- https://creativecommons.org/licenses/by/4.0
- https://eprint.iacr.org
- https://eprint.iacr.org/2020/077.pdf
- https://eprint.iacr.org/about.html
- https://eprint.iacr.org/byyear