eprint.iacr.org/2002/026

Preview meta tags from the eprint.iacr.org website.

Linked Hostnames

5

Thumbnail

Search Engine Appearance

Google

https://eprint.iacr.org/2002/026

Generic Groups, Collision Resistance, and ECDSA

Proved here is the sufficiency of certain conditions to ensure the Elliptic Curve Digital Signature Algorithm (ECDSA) existentially unforgeable by adaptive chosen-message attacks. The sufficient conditions include (i) a uniformity property and collision-resistance for the underlying hash function, (ii) pseudo-randomness in the private key space for the ephemeral private key generator, (iii) generic treatment of the underlying group, and (iv) a further condition on how the ephemeral public keys are mapped into the private key space. For completeness, a brief survey of necessary security conditions is also given. Some of the necessary conditions are weaker than the corresponding sufficient conditions used in the security proofs here, but others are identical. Despite the similarity between DSA and ECDSA, the main result is not appropriate for DSA, because the fourth condition above seems to fail for DSA. (The corresponding necessary condition is plausible for DSA, but is not proved here nor is the security of DSA proved assuming this weaker condition.) Brickell et al., Jakobsson et al. and Pointcheval et al. only consider signature schemes that include the ephemeral public key in the hash input, which ECDSA does not do, and moreover, assume a condition on the hash function stronger than the first condition above. This work seems to be the first advance in the provable security of ECDSA.



Bing

Generic Groups, Collision Resistance, and ECDSA

https://eprint.iacr.org/2002/026

Proved here is the sufficiency of certain conditions to ensure the Elliptic Curve Digital Signature Algorithm (ECDSA) existentially unforgeable by adaptive chosen-message attacks. The sufficient conditions include (i) a uniformity property and collision-resistance for the underlying hash function, (ii) pseudo-randomness in the private key space for the ephemeral private key generator, (iii) generic treatment of the underlying group, and (iv) a further condition on how the ephemeral public keys are mapped into the private key space. For completeness, a brief survey of necessary security conditions is also given. Some of the necessary conditions are weaker than the corresponding sufficient conditions used in the security proofs here, but others are identical. Despite the similarity between DSA and ECDSA, the main result is not appropriate for DSA, because the fourth condition above seems to fail for DSA. (The corresponding necessary condition is plausible for DSA, but is not proved here nor is the security of DSA proved assuming this weaker condition.) Brickell et al., Jakobsson et al. and Pointcheval et al. only consider signature schemes that include the ephemeral public key in the hash input, which ECDSA does not do, and moreover, assume a condition on the hash function stronger than the first condition above. This work seems to be the first advance in the provable security of ECDSA.



DuckDuckGo

https://eprint.iacr.org/2002/026

Generic Groups, Collision Resistance, and ECDSA

Proved here is the sufficiency of certain conditions to ensure the Elliptic Curve Digital Signature Algorithm (ECDSA) existentially unforgeable by adaptive chosen-message attacks. The sufficient conditions include (i) a uniformity property and collision-resistance for the underlying hash function, (ii) pseudo-randomness in the private key space for the ephemeral private key generator, (iii) generic treatment of the underlying group, and (iv) a further condition on how the ephemeral public keys are mapped into the private key space. For completeness, a brief survey of necessary security conditions is also given. Some of the necessary conditions are weaker than the corresponding sufficient conditions used in the security proofs here, but others are identical. Despite the similarity between DSA and ECDSA, the main result is not appropriate for DSA, because the fourth condition above seems to fail for DSA. (The corresponding necessary condition is plausible for DSA, but is not proved here nor is the security of DSA proved assuming this weaker condition.) Brickell et al., Jakobsson et al. and Pointcheval et al. only consider signature schemes that include the ephemeral public key in the hash input, which ECDSA does not do, and moreover, assume a condition on the hash function stronger than the first condition above. This work seems to be the first advance in the provable security of ECDSA.

  • General Meta Tags

    13
    • title
      Generic Groups, Collision Resistance, and ECDSA
    • charset
      utf-8
    • viewport
      width=device-width, initial-scale=1, shrink-to-fit=no
    • citation_title
      Generic Groups, Collision Resistance, and ECDSA
    • citation_author
      Daniel R. L. Brown
  • Open Graph Meta Tags

    7
    • og:image
      https://eprint.iacr.org/img/iacrlogo.png
    • og:image:alt
      IACR logo
    • og:url
      https://eprint.iacr.org/2002/026
    • og:site_name
      IACR Cryptology ePrint Archive
    • og:type
      article
  • Link Tags

    4
    • apple-touch-icon
      /img/apple-touch-icon-180x180.png
    • shortcut icon
      /favicon.ico
    • stylesheet
      /css/dist/css/bootstrap.min.css
    • stylesheet
      /css/eprint.css?v=10

Links

28