eprint.iacr.org/2001/079

Preview meta tags from the eprint.iacr.org website.

Linked Hostnames

5

Thumbnail

Search Engine Appearance

Google

https://eprint.iacr.org/2001/079

Authenticated Encryption in the Public-Key Setting: Security Notions and Analyses

This paper addresses the security of authenticated encryption schemes in the public key setting. We present two new notions of authenticity that are stronger than the integrity notions given in the symmetric setting \cite{bn00}. We also show that chosen-ciphertext attack security (IND-CCA) in the public key setting is not obtained in general from the combination of chosen-plaintext security (IND-CPA) and integrity of ciphertext (INT-CTXT), which is in contrast to the results shown in the symmetric setting \cite{ky00,bn00}. We provide security analyses of authenticated encryption schemes constructed by combining a given public key encryption scheme and a given digital signature scheme in a ``generic'' manner ---namely, Encrypt-and-Sign, Sign-then-Encrypt, and Encrypt-then-Sign--- and show that none of them, in general, provide security under all notions defined in this paper. We then present a scheme called {\em ESSR} that meets all security notions defined here. We also give security analyses on an efficient Diffie-Hellman based scheme called {\em DHETM}, which can be thought of as a transform of the encryption scheme ``DHIES'' \cite{abr01} into an {\em authenticated} encryption scheme in the public key setting.



Bing

Authenticated Encryption in the Public-Key Setting: Security Notions and Analyses

https://eprint.iacr.org/2001/079

This paper addresses the security of authenticated encryption schemes in the public key setting. We present two new notions of authenticity that are stronger than the integrity notions given in the symmetric setting \cite{bn00}. We also show that chosen-ciphertext attack security (IND-CCA) in the public key setting is not obtained in general from the combination of chosen-plaintext security (IND-CPA) and integrity of ciphertext (INT-CTXT), which is in contrast to the results shown in the symmetric setting \cite{ky00,bn00}. We provide security analyses of authenticated encryption schemes constructed by combining a given public key encryption scheme and a given digital signature scheme in a ``generic'' manner ---namely, Encrypt-and-Sign, Sign-then-Encrypt, and Encrypt-then-Sign--- and show that none of them, in general, provide security under all notions defined in this paper. We then present a scheme called {\em ESSR} that meets all security notions defined here. We also give security analyses on an efficient Diffie-Hellman based scheme called {\em DHETM}, which can be thought of as a transform of the encryption scheme ``DHIES'' \cite{abr01} into an {\em authenticated} encryption scheme in the public key setting.



DuckDuckGo

https://eprint.iacr.org/2001/079

Authenticated Encryption in the Public-Key Setting: Security Notions and Analyses

This paper addresses the security of authenticated encryption schemes in the public key setting. We present two new notions of authenticity that are stronger than the integrity notions given in the symmetric setting \cite{bn00}. We also show that chosen-ciphertext attack security (IND-CCA) in the public key setting is not obtained in general from the combination of chosen-plaintext security (IND-CPA) and integrity of ciphertext (INT-CTXT), which is in contrast to the results shown in the symmetric setting \cite{ky00,bn00}. We provide security analyses of authenticated encryption schemes constructed by combining a given public key encryption scheme and a given digital signature scheme in a ``generic'' manner ---namely, Encrypt-and-Sign, Sign-then-Encrypt, and Encrypt-then-Sign--- and show that none of them, in general, provide security under all notions defined in this paper. We then present a scheme called {\em ESSR} that meets all security notions defined here. We also give security analyses on an efficient Diffie-Hellman based scheme called {\em DHETM}, which can be thought of as a transform of the encryption scheme ``DHIES'' \cite{abr01} into an {\em authenticated} encryption scheme in the public key setting.

  • General Meta Tags

    15
    • title
      Authenticated Encryption in the Public-Key Setting: Security Notions and Analyses
    • charset
      utf-8
    • viewport
      width=device-width, initial-scale=1, shrink-to-fit=no
    • citation_title
      Authenticated Encryption in the Public-Key Setting: Security Notions and Analyses
    • citation_author
      Jee Hea An
  • Open Graph Meta Tags

    7
    • og:image
      https://eprint.iacr.org/img/iacrlogo.png
    • og:image:alt
      IACR logo
    • og:url
      https://eprint.iacr.org/2001/079
    • og:site_name
      IACR Cryptology ePrint Archive
    • og:type
      article
  • Link Tags

    4
    • apple-touch-icon
      /img/apple-touch-icon-180x180.png
    • shortcut icon
      /favicon.ico
    • stylesheet
      /css/dist/css/bootstrap.min.css
    • stylesheet
      /css/eprint.css?v=10

Links

29