doi.org/10.1109/TAFFC.2020.3045269

Preview meta tags from the doi.org website.

Linked Hostnames

2

Thumbnail

Search Engine Appearance

Google

https://doi.org/10.1109/TAFFC.2020.3045269

To Be or Not to Be in Flow at Work: Physiological Classification of Flow Using Machine Learning

The focal role of flow in promoting desirable outcomes in companies, such as increased employees’ well-being and performance, led scholars to study flow in the context of work. However, current measurement approaches which assess flow via self-report scales after task execution are limited due to obtrusiveness and a lack of real-time support. Hence, new measurement approaches must be created to overcome these limitations. In this article, we use cardiac features (heart rate variability; HRV) and a Random Forest classifier to distinguish high and low flow. Our results from a large-scale lab experiment with 158 participants and a field study with nine participants reveal, that with HRV features alone, flow-classifiers can be built with an accuracy of 68.5 percent (lab) and 70.6 percent (field). Our research contributes to the challenge of developing a less obtrusive, real-time measurement method of flow based on physiological features and to investigate flow from a physiological perspective. Our findings may serve as foundation for future work aiming to build physio-adaptive systems which can improve employee's performance. For instance, these systems could ensure that no notifications are forwarded to employees when they are ‘sensing’ flow.



Bing

To Be or Not to Be in Flow at Work: Physiological Classification of Flow Using Machine Learning

https://doi.org/10.1109/TAFFC.2020.3045269

The focal role of flow in promoting desirable outcomes in companies, such as increased employees’ well-being and performance, led scholars to study flow in the context of work. However, current measurement approaches which assess flow via self-report scales after task execution are limited due to obtrusiveness and a lack of real-time support. Hence, new measurement approaches must be created to overcome these limitations. In this article, we use cardiac features (heart rate variability; HRV) and a Random Forest classifier to distinguish high and low flow. Our results from a large-scale lab experiment with 158 participants and a field study with nine participants reveal, that with HRV features alone, flow-classifiers can be built with an accuracy of 68.5 percent (lab) and 70.6 percent (field). Our research contributes to the challenge of developing a less obtrusive, real-time measurement method of flow based on physiological features and to investigate flow from a physiological perspective. Our findings may serve as foundation for future work aiming to build physio-adaptive systems which can improve employee's performance. For instance, these systems could ensure that no notifications are forwarded to employees when they are ‘sensing’ flow.



DuckDuckGo

https://doi.org/10.1109/TAFFC.2020.3045269

To Be or Not to Be in Flow at Work: Physiological Classification of Flow Using Machine Learning

The focal role of flow in promoting desirable outcomes in companies, such as increased employees’ well-being and performance, led scholars to study flow in the context of work. However, current measurement approaches which assess flow via self-report scales after task execution are limited due to obtrusiveness and a lack of real-time support. Hence, new measurement approaches must be created to overcome these limitations. In this article, we use cardiac features (heart rate variability; HRV) and a Random Forest classifier to distinguish high and low flow. Our results from a large-scale lab experiment with 158 participants and a field study with nine participants reveal, that with HRV features alone, flow-classifiers can be built with an accuracy of 68.5 percent (lab) and 70.6 percent (field). Our research contributes to the challenge of developing a less obtrusive, real-time measurement method of flow based on physiological features and to investigate flow from a physiological perspective. Our findings may serve as foundation for future work aiming to build physio-adaptive systems which can improve employee's performance. For instance, these systems could ensure that no notifications are forwarded to employees when they are ‘sensing’ flow.

  • General Meta Tags

    12
    • title
      To Be or Not to Be in Flow at Work: Physiological Classification of Flow Using Machine Learning | IEEE Journals & Magazine | IEEE Xplore
    • google-site-verification
      qibYCgIKpiVF_VVjPYutgStwKn-0-KBB6Gw4Fc57FZg
    • Description
      The focal role of flow in promoting desirable outcomes in companies, such as increased employees’ well-being and performance, led scholars to study flow in the
    • Content-Type
      text/html; charset=utf-8
    • viewport
      width=device-width, initial-scale=1.0
  • Open Graph Meta Tags

    3
    • og:image
      https://ieeexplore.ieee.org/assets/img/ieee_logo_smedia_200X200.png
    • og:title
      To Be or Not to Be in Flow at Work: Physiological Classification of Flow Using Machine Learning
    • og:description
      The focal role of flow in promoting desirable outcomes in companies, such as increased employees’ well-being and performance, led scholars to study flow in the context of work. However, current measurement approaches which assess flow via self-report scales after task execution are limited due to obtrusiveness and a lack of real-time support. Hence, new measurement approaches must be created to overcome these limitations. In this article, we use cardiac features (heart rate variability; HRV) and a Random Forest classifier to distinguish high and low flow. Our results from a large-scale lab experiment with 158 participants and a field study with nine participants reveal, that with HRV features alone, flow-classifiers can be built with an accuracy of 68.5 percent (lab) and 70.6 percent (field). Our research contributes to the challenge of developing a less obtrusive, real-time measurement method of flow based on physiological features and to investigate flow from a physiological perspective. Our findings may serve as foundation for future work aiming to build physio-adaptive systems which can improve employee's performance. For instance, these systems could ensure that no notifications are forwarded to employees when they are ‘sensing’ flow.
  • Twitter Meta Tags

    1
    • twitter:card
      summary
  • Link Tags

    9
    • canonical
      https://ieeexplore.ieee.org/document/9296229/
    • icon
      /assets/img/favicon.ico
    • stylesheet
      https://ieeexplore.ieee.org/assets/css/osano-cookie-consent-xplore.css
    • stylesheet
      /assets/css/simplePassMeter.min.css?cv=20250701_00000
    • stylesheet
      /assets/dist/ng-new/styles.css?cv=20250701_00000

Links

17