distill.pub/2019/visual-exploration-gaussian-processes
Preview meta tags from the distill.pub website.
Linked Hostnames
24- 6 links todistill.pub
- 6 links togithub.com
- 5 links todoi.org
- 2 links toen.wikipedia.org
- 2 links toproceedings.mlr.press
- 2 links towww.cgmi.uni-konstanz.de
- 2 links towww.khanacademy.org
- 2 links towww.sfbtrr161.de
Thumbnail

Search Engine Appearance
https://distill.pub/2019/visual-exploration-gaussian-processes
A Visual Exploration of Gaussian Processes
How to turn a collection of small building blocks into a versatile tool for solving regression problems.
Bing
A Visual Exploration of Gaussian Processes
https://distill.pub/2019/visual-exploration-gaussian-processes
How to turn a collection of small building blocks into a versatile tool for solving regression problems.
DuckDuckGo
A Visual Exploration of Gaussian Processes
How to turn a collection of small building blocks into a versatile tool for solving regression problems.
General Meta Tags
37- titleA Visual Exploration of Gaussian Processes
- titleA Visual Exploration of Gaussian Processes
- charsetutf-8
- viewportwidth=device-width, initial-scale=1
- X-UA-CompatibleIE=Edge,chrome=1
Open Graph Meta Tags
7- og:typearticle
- og:titleA Visual Exploration of Gaussian Processes
- og:descriptionHow to turn a collection of small building blocks into a versatile tool for solving regression problems.
- og:urlhttps://distill.pub/2019/visual-exploration-gaussian-processes
- og:imagehttps://distill.pub/2019/visual-exploration-gaussian-processes/thumbnail.jpg
Twitter Meta Tags
7- twitter:cardsummary_large_image
- twitter:titleA Visual Exploration of Gaussian Processes
- twitter:descriptionHow to turn a collection of small building blocks into a versatile tool for solving regression problems.
- twitter:urlhttps://distill.pub/2019/visual-exploration-gaussian-processes
- twitter:imagehttps://distill.pub/2019/visual-exploration-gaussian-processes/thumbnail.jpg
Item Prop Meta Tags
4- descriptionHow to turn a collection of small building blocks into a versatile tool for solving regression problems.
- article:published2019-04-02
- article:created2019-04-02
- article:modified2021-12-17T13:23:57.000Z
Link Tags
5- alternate/rss.xml
- canonicalhttps://distill.pub/2019/visual-exploration-gaussian-processes
- icon
- stylesheetcss/style.css
- stylesheethttps://distill.pub/third-party/katex/katex.min.css
Links
43- http://katbailey.github.io/post/gaussian-processes-for-dummies
- http://nbviewer.jupyter.org/github/adamian/adamian.github.io/blob/master/talks/Brown2016.ipynb
- http://papers.nips.cc/paper/3211-using-deep-belief-nets-to-learn-covariance-kernels-for-gaussian-processes.pdf
- http://proceedings.mlr.press/v31/damianou13a.pdf
- http://proceedings.mlr.press/v51/wilson16.pdf